Math, asked by shaikhmubashshir313, 7 months ago

find the sum of the first 40 terms of the ap whose 4th term is 8 and 6th term is 14​

Answers

Answered by SavageBlast
5

Given:-

  • 4th term of an A.P = 8

  • 6th term of an A.P = 14

  • No. of term = 40

To Find:-

  • Sum of first 49 terms

Formula Used:-

  • {\boxed{\bf{a_n=a+(n-1)d}}}

  • {\boxed{\bf{S_n=\dfrac{n}{2}[2a+(n-1)d]}}}

Solution:-

As given,

\sf :\implies\:a_4= 8

\sf :\implies\:a+(n-1)d= 8

\sf :\implies\:a+(4-1)d= 8

\sf :\implies\:a+3d= 8

\sf :\implies\:a= 8-3d ____{1}

And,

\sf :\implies\:a_6= 14

\sf :\implies\:a+(n-1)d= 14

\sf :\implies\:a+(6-1)d= 14

\sf :\implies\:a+5d= 14

Putting Value of a,

\sf :\implies\:8-3d+5d= 14

\sf :\implies\:8+2d= 14

\sf :\implies\:2d= 22

\sf :\implies\:d=\dfrac{22}{2}

\bf :\implies\:d= 11

Putting value of d in {1},

\sf :\implies\:a= 8-3\times11

\sf :\implies\:a= 8-33

\bf :\implies\:a= -25

Now, Sum of first 40 terms:-

\sf :\implies\:S_n=\dfrac{n}{2}[2a+(n-1)d]

\sf :\implies\:S_{40}=\dfrac{40}{2}[2\times(-25)+(40-1)11]

\sf :\implies\:S_{40}=20[-50+39\times11]

\sf :\implies\:S_{40}=20[-50+429]

\sf :\implies\:S_{40}=20\times379

\bf :\implies\:S_{40}=7580

Hence, The sum of first 40 terms of an A.P is 7,580.

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions