Math, asked by dhananjay600, 1 year ago

find the sum to n terms of the series 1/1.2+1/2.3+1/3.4+.......

Answers

Answered by lublana
20

Given:

1/1\cdot 2+1/2\cdot 3+1/3\cdot 4+...

To find:

Sum of n terms of series

Solution:

a_1=\frac{1}{1\cdot 2}=1-\frac{1}{2}

a_2=\frac{1}{2\cdot 3}=\frac{1}{2}-\frac{1}{3}

a_3=\frac{1}{3\cdot 4}=\frac{1}{3}-\frac{1}{4}

:

:

:

:

a_n=\frac{1}{n}-\frac{1}{n+1}

Adding all terms of the series then we get

S_n=a_1+a_2+a_3+...+a_n

S_n=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+..+\frac{1}{n}-\frac{1}{n+1}

S_n=1-\frac{1}{n+1}

S_n=\frac{n+1-1}{n+1}=\frac{n}{n+1}

Hence, the sum of n terms of given series=\frac{n}{n+1}

Similar questions