Physics, asked by maruf30881, 10 months ago

Find the torque of a force F=a(hati+2hatj+3hatk) N about a point O. The position vector of point of application of force about O is r=(2hati+3hatj-hatk) m.

Answers

Answered by SmartestGuy55
0

Answer:

Sorry I don't know anything about this

Answered by mad210218
1

The value of Torque = a(11 i  -7 j + k)

Step by step explanation:

Given:

Force F =a(\hat i + 2\hat j + 3\hat k) N                                        

Position vector r = (2\hat i +3\hat j - 1\hat k) m

To find

Torque= τ

\textbf{\large  Formula of torque =  r} \times \textbf{\large F}                   (equation 1)

So,Torque is the vector product of position vector (r) and force vector (F).

Putting the values of r and F ,

We can find the value of torque by using matrix:

Torque= τ =

                         \left[\begin{array}{ccc}\hat i&\hat j&\hat k\\2&3&-1\\a&2a&3a\end{array}\right]                       (equation 2)

So,

Torque= τ = \hat i(9a + 2a) -\hat j(6a + a) +\hat k(4a - 3a)\\

   

                 =11a \ \hat i  \ -7a\hat j \ +a\hat k

\textbf{\Large So, the value of Torque = a(11 i  -7 j + k)}

Similar questions