Math, asked by shambhavirai, 1 year ago

Find the total number of ways of selecting five letters from the letters of the word INDEPENDENT.

Answers

Answered by roshinik1219
5

Given:  

  • Letters of the word INDEPENDENT.

To Find:

  • Total number of ways of selecting five letters from the letters of the word INDEPENDENT.

Solution:

Letters of the word INDEPENDENT are I , P , T , DDD , NNN , EEE

Now, Five letters can be selected in the following ways :

  • When all letters are different then

                   Number of ways =^6C_5\\ =6

  • When two letters are same and three are different then,

                   Number of ways= ^3c_1 \times ^5 c_3

                                              =3 \times 10=30

  • When three letters are same and two are different then,

                    Number of ways = ^2c_1\times ^5c_2

                                                 =2\times 10=20

  • When three letters are same and two are same then,

                    Number of ways  =  ^2c_1 \times ^2c_1

                                                  = 2 \times 2=4

  • When two letters are same , two are same and one is different then,

                    Number of ways = ^3c_2 \times ^4c_1

                                                 =3 \times 4=12

        Total selections

                                =6+30+20+4+12\\                              =72

Thus, Total number of ways of selecting five letters = 72ways

Similar questions