the complex solution of (z+i)^2011=z^2011 lie on
a. a circle
b.an ellipse
c. a hyperbola
d. a straight line
Answers
Answered by
27
z = x + i y
1 / z = (x - i y)/(x²+y²)
i / z = ( i x + y) /(x²+y²)
(z + i)²⁰¹¹ = z²⁰¹¹
=> [ (z + i)/z ]²⁰¹¹ = 1
=> [ 1 + i/z ]²⁰¹¹ = 1
=> [ 1 + y/(x²+y²) + i x/(x²+y²) ]²⁰¹¹ = 1
=> [ (x²+y²+y)/(x²+y²) + i x/(x²+y²) ]²⁰¹¹ = 1
The complex number on the LHS can be expressed in terms of magnitude A and exp(i theta). Then A^2011 = 1. So A = 1.
Hence, (x²+y²+y)² + x² = (x²+y²)²
(x²+y²)² + y² + 2 (x²+y²) y + x² = (x²+y²)²
(x² + y²) (1 + 2 y) = 0
=> y = -1/2
Ans: A straight line.
1 / z = (x - i y)/(x²+y²)
i / z = ( i x + y) /(x²+y²)
(z + i)²⁰¹¹ = z²⁰¹¹
=> [ (z + i)/z ]²⁰¹¹ = 1
=> [ 1 + i/z ]²⁰¹¹ = 1
=> [ 1 + y/(x²+y²) + i x/(x²+y²) ]²⁰¹¹ = 1
=> [ (x²+y²+y)/(x²+y²) + i x/(x²+y²) ]²⁰¹¹ = 1
The complex number on the LHS can be expressed in terms of magnitude A and exp(i theta). Then A^2011 = 1. So A = 1.
Hence, (x²+y²+y)² + x² = (x²+y²)²
(x²+y²)² + y² + 2 (x²+y²) y + x² = (x²+y²)²
(x² + y²) (1 + 2 y) = 0
=> y = -1/2
Ans: A straight line.
kvnmurty:
click on the red heart thanks above pls
Answered by
7
z = x + i y
1 / z = (x - i y)/(x²+y²)
i / z = ( i x + y) /(x²+y²)
(z + i)²⁰¹¹ = z²⁰¹¹
= [ (z + i)/z ]²⁰¹¹ = 1
= [ 1 + i/z ]²⁰¹¹ = 1
= [ 1 + y/(x²+y²) + i x/(x²+y²) ]²⁰¹¹ = 1
= [ (x²+y²+y)/(x²+y²) + i x/(x²+y²) ]²⁰¹¹ = 1
The number on the LHS can be expressed in terms of magnitude. Then a...2011 = 1. .:. a = 1.
(x²+y²+y)² + x² = (x²+y²)²
(x²+y²)² + y² + 2 (x²+y²) y + x² = (x²+y²)²
(x² + y²) (1 + 2 y) = 0
straight line.
1 / z = (x - i y)/(x²+y²)
i / z = ( i x + y) /(x²+y²)
(z + i)²⁰¹¹ = z²⁰¹¹
= [ (z + i)/z ]²⁰¹¹ = 1
= [ 1 + i/z ]²⁰¹¹ = 1
= [ 1 + y/(x²+y²) + i x/(x²+y²) ]²⁰¹¹ = 1
= [ (x²+y²+y)/(x²+y²) + i x/(x²+y²) ]²⁰¹¹ = 1
The number on the LHS can be expressed in terms of magnitude. Then a...2011 = 1. .:. a = 1.
(x²+y²+y)² + x² = (x²+y²)²
(x²+y²)² + y² + 2 (x²+y²) y + x² = (x²+y²)²
(x² + y²) (1 + 2 y) = 0
straight line.
Similar questions
Science,
8 months ago
Math,
8 months ago
Social Sciences,
8 months ago
Physics,
1 year ago
English,
1 year ago