Math, asked by seraiah, 9 months ago

find the total surface area and the lateral
surface area of a cuboid whose length is 12m,
breadth is 9 m and height is 7m.

Answers

Answered by ShreeHarshi
4

Answer:

The total surface area of cuboid is 510 m sq.

The lateral surface area of cuboid is 294 m sq.

Step-by-step explanation:

ATQ ,

L = 12m , B = 9m , H = 7m

first we find the total surface area

so, total surface area = 2( l×b + b×h + l×h )

= 2 ( 12×9 + 9×7 + 12 × 7 ) metre sq.

= 2 ( 108 + 63 + 84 ) metre sq.

= ( 2 × 255 ) metre sq .

= 510 m sq.

Now we find the lateral surface area

so , lateral surface area = 2×h ( l + b )

= 2 × 7 ( 12 + 9 ) m sq.

= 14 × 21 m sq.

= 294 m sq.

Answered by sethrollins13
10

Given :

  • Length of the Cuboid is 12 m.
  • Breadth of the Cuboid is 9 m.
  • Height of the Cuboid is 7 m.

To Find :

  • Lateral Surface Area of Cuboid.
  • Total Surface Area of Cuboid.

Solution :

For Lateral Surface Area :

Using Formula :

\longmapsto\tt\boxed{L.S.A\:of\:Cuboid=2h(l+b)}

Putting Values :

\longmapsto\tt{2\times{7}\times{(12+9)}}

\longmapsto\tt{14\times{21}}

\longmapsto\tt\bf{294\:{m}^{2}}

So, The Lateral Surface Area of Cuboid is 294 m²..

Now ,

For Total Surface Area :

Using Formula :

\longmapsto\tt\boxed{T.S.A\:of\:Cuboid=2(lb+bh+hl)}

Putting Values :

\longmapsto\tt{2(12\times{9}+9\times{7}+7\times{12}}

\longmapsto\tt{2(108+63+84)}

\longmapsto\tt{2(255)}

\longmapsto\tt\bf{510\:{m}^{2}}

So , The Total Surface Area of Cuboid is 510 cm².

_______________________

  • L.S.A of Cuboid = 2h(l+b)
  • T.S.A of Cuboid = 2(lb+bh+hl)
  • Volume of Cuboid = l×b×h
  • L.S.A of Cube = 4a²
  • T.S.A of Cube = 6a²
  • Volume of Cube = a³

Here :

  • l = length
  • b = breadth
  • h = height
  • a = side of cube.

_______________________

Similar questions