Math, asked by Amirdhavarshini8260, 1 year ago

Find the transformation of a triangle with coordinates a(1,0) b(0,1) and c(1,1) by rotating 450 about the origin and then translating two units in x and y direction.

Answers

Answered by desi42
13

Answer:

The transformation of a triangle with coordinates a(1,0) b(0,1) and c(1,1) by rotating 450 about the origin and then translating two units in x and y direction.

Answered by shritik1605sl
3

Answer:

The final coordinates after tranformation by rotating 45` about origin and then translating two units in x and y direction are  (2+\frac{1}{\sqrt{2} } ,2+\frac{1}{\sqrt{2} } ), (2-\frac{1}{\sqrt{2} } ,2+\frac{1}{\sqrt{2} } ), (2,4).

Step-by-step explanation:

Firstly transforming the coordinate by rotating 45' about origin, so the coordinate will change to,

   (1,0)                ---->                  (\frac{1}{\sqrt{2} } ,\frac{1}{\sqrt{2} } )

   (0,1)                ---->                  (-\frac{1}{\sqrt{2} } ,\frac{1}{\sqrt{2} } )

   (1,1)                 ---->                  (0,2)

Then translating the points, 2 units in x and y direction.

So the final coordinates will be

   (1,0)               ---->                   (2+\frac{1}{\sqrt{2} } ,2+\frac{1}{\sqrt{2} } )

   (0,1)               ---->                   (2-\frac{1}{\sqrt{2} } ,2+\frac{1}{\sqrt{2} } )

   (1,1)                ---->                    (2,4)

Similar questions