Math, asked by antoniowest23, 11 months ago

Find the two numbers whose sum is 15 and whose product is maximum.

Answers

Answered by MaheswariS
0

\underline{\textbf{Given:}}

\textsf{Sum of two numbers is 15}

\underline{\textbf{To find:}}

\textsf{The two numbers whose product is maximum}

\underline{\textbf{Solution:}}

\textsf{Let the two numbers x and y (x > y)}

\textsf{As per given data,}

\mathsf{x+y=15}

\implies\mathsf{y=15-x}

\textsf{Their product is xy}

\mathsf{P=xy}

\mathsf{P=x(15-x)}

\mathsf{P=15x-x^2}

\mathsf{P(x)=15x-x^2\;(say)}

\mathsf{P'(x)=15-2x}

\mathsf{P''(x)=-2}

\mathsf{For\;maximum,\;P'(x)=0}

\implies\mathsf{15-2x=0}

\implies\mathsf{2x=15}

\implies\mathsf{x=\dfrac{15}{2}}

\implies\boxed{\mathsf{x=7.5}}

\mathsf{when\;x=7.5,\;P''(x)=-2\;<\;0}

\therefore\textsf{P(x) is maximum when x=7.5}

\mathsf{x=7.5\;\implies\;y=7.5}

\textsf{Hence the required numbers are 7.5 and 7.5}

Similar questions