Find the unit vector perpendicular to Ā= 31+2) - and B=1-1+1
Answers
Answered by
1
Finally, the required, unit vector will be
∣∣AB×AC∣∣AB×AC
We have, AB=(1−3,−1+1,−3−2)=(−2,0,−5).
=−10i−7j+4k=(−10,−7,4)
=−10i−7j+4k=(−10,−7,4)⇒∣∣AB×AC∣∣=(−10)2+(−7)2+(4)2=100+49+16=165.
=−10i−7j+4k=(−10,−7,4)⇒∣∣AB×AC∣∣=(−10)2+(−7)2+(4)2=100+49+16=165.Finally, the desired unit vector is
=−10i−7j+4k=(−10,−7,4)⇒∣∣AB×AC∣∣=(−10)2+(−7)2+(4)2=100+49+16=165.Finally, the desired unit vector is (−16510,−1657,1654).
=−10i−7j+4k=(−10,−7,4)⇒∣∣AB×AC∣∣=(−10)2+(−7)2+(4)2=100+49+16=165.Finally, the desired unit vector is (−16510,−1657,1654).
Answered by
1
ANSWER ➡️The given points, A(3,−1,2),B(1,−1,−3) and C(4,−3,1) lie in the plane ABC.
Accordingly, the vectors
AB
and
AC
ϵ the plane ABC.
Hence,
AB
×
AC
is perpendicular to the plane ABC.
Finally, the required, unit vector will be
∣∣
AB
×
AC
∣∣
AB
×
AC
We have,
AB
=(1−3,−1+1,−3−2)=(−2,0,−5).
AC
=(1,−2,−1), so that,
AB
×
AC
=
∣
∣
∣
∣
∣
∣
∣
∣
i
−2
1
j
0
−2
k
−5
−1
∣
∣
∣
∣
∣
∣
∣
∣
=−10i−7j+4k=(−10,−7,4)
⇒∣∣
AB
×
AC
∣∣=
(−10)
2
+(−7)
2
+(4)
2
=
100+49+16
=
165
.
Finally, the desired unit vector is
(− 16510,−1657,1654).
Similar questions