Math, asked by vcsbhaskar, 11 months ago

find the value if a, b are rational and a√2+b√3=√98+√108-√48-√72​

Answers

Answered by ishwarsinghdhaliwal
3

a \sqrt{2}  + b \sqrt{3}  =  \sqrt{98}  +  \sqrt{108}  -  \sqrt{48}  -  \sqrt{72}  \\ a \sqrt{2}  + b \sqrt{3}  =  \sqrt{2 \times 7 \times 7}  +  \sqrt{2 \times 2 \times 3 \times 3 \times 3}  -  \sqrt{2 \times 2 \times 2 \times 2 \times 3}  -  \sqrt{2 \times 2 \times 2 \times 3 \times 3}  \\ a \sqrt{2}  + b \sqrt{3}  = 7 \sqrt{2 }  + 6 \sqrt{3}  - 4 \sqrt{3}  - 6 \sqrt{2}  \\ a \sqrt{2}  + b \sqrt{3}  =   \sqrt{2}  + 2 \sqrt{3}  \\

Therefore, a= 1 and b= 2

Similar questions