Math, asked by amisha2507, 1 month ago

Find the value of √116281 and evaluate √1162.81+√11.6281

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Consider,

\rm :\longmapsto\: \sqrt{116281}

Let's evaluate this square root by Long Division Method.

\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{}}}&{\underline{\sf{\:\:341 \:\:}}}\\ {\underline{\sf{3}}}& {\sf{\:\:116281 \:\:}} \\{\sf{}}& \underline{\sf{\:\: \: \: \: \: \: \: \: 9 \:  \:  \:  \:    \:  \:  \: \:\:}} \\ {\underline{\sf{64}}}& {\sf{\:\: \: \: \: \: 262 \:  \: \:  \:\:}} \\{\sf{}}& \underline{\sf{\:\: \: \: \: 256 \:   \:  \: \: \:\:}} \\ {\underline{\sf{681}}}& {\sf{\: \:  \:  \:  \:  \:  \:  \: \:681  \:\:}} \\{\sf{}}& \underline{\sf{\:\: \:  \:  \:  \:  \:  \: 681\:\:}}  \\ {\underline{\sf{}}}& {\sf{\: \:  \:  \: \: 0\:\:}}{\sf{}}&{\sf{\:\:\:\:}}\end{array}\end{gathered}

Hence,

\rm :\longmapsto\: \sqrt{116281} = 341

Now, Consider

 \red{\rm :\longmapsto\: \sqrt{1162.81} }

 \red{\rm \:  =  \: \sqrt{\dfrac{116281}{100} }}

 \red{\rm \:  =  \:\dfrac{ \sqrt{116281} }{ \sqrt{100} }}

 \red{\rm \:  =  \:\dfrac{341}{10}}

 \red{\rm \:  =  \:34.1}

 \red{\bf\implies \: \sqrt{1162.81} \:  =  \:34.1}

Now, Consider

 \green{\rm :\longmapsto\: \sqrt{11.6281} }

 \green{\rm \:  =  \: \sqrt{\dfrac{116281}{10000} }}

 \green{\rm \:  =  \:\dfrac{ \sqrt{116281} }{ \sqrt{10000} }}

 \green{\rm \:  =  \:\dfrac{341}{100}}

 \green{\rm \:  =  \:3.41}

 \green{\bf\implies \: \sqrt{11.6281} \:  =  \:3.41}

Now, Consider

 \purple{\rm :\longmapsto\: \sqrt{1162.81} +  \sqrt{11.6281}}

 \purple{\rm \:  =  \:34.1 + 3.41}

 \purple{\rm \:  =  \:37.51}

Hence,

 \purple{\bf\implies \: \sqrt{1162.81} +  \sqrt{11.6281} = 37.51}

Answered by swanhayden7
1

Answer:

Hence,   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:\:  \:  \:  \:  \:  \:  \: \\ </p><p></p><p>\purple{\bf\implies \: \sqrt{1162.81} + \sqrt{11.6281} = 37.51}

Similar questions