Math, asked by shruti3622, 11 months ago

find the value of: 27^-2/3×81^5/4 by (1/3)^-3 with answer 1​

Answers

Answered by kartik2507
63

Step-by-step explanation:

 \frac{ {27}^{ -  \frac{2}{3} }  \times  {81}^{ \frac{5}{4} } }{ ({ \frac{1}{3}) }^{ - 3} }  \\  =  \frac{ {( {3}^{3} )}^{ -  \frac{2}{3} }  \times  {( {3}^{4} )}^{ \frac{5}{4} } }{  \frac{1}{ {3}^{ - 3} }  }  \\  =  \frac{ {3}^{ - 2}  \times  {3}^{5} }{ {3}^{3} }  \\  =  {3}^{ - 2}  \times  {3}^{5}  \times  {3}^{ - 3}  \\  =  {3}^{ - 2 + 5 - 3}  \\  =  {3}^{0}  \\  = 1

hope you get your answer

Answered by pinquancaro
51

\dfrac{ {27}^{ - \frac{2}{3} }  \times  {81}^{ \frac{5}{4} } }{ ({ \frac{1}{3}) }^{ - 3} }=1

Step-by-step explanation:

Given : Expression {27}^{ -  \frac{2}{3} }  \times  {81}^{ \frac{5}{4}  by  (\frac{1}{3}) }^{ - 3}

To find : The value of expression ?

Solution :

The expression is written as,

\dfrac{ {27}^{ - \frac{2}{3} }  \times  {81}^{ \frac{5}{4} } }{ ({ \frac{1}{3}) }^{ - 3} }

=\frac{ {( {3}^{3} )}^{ -  \frac{2}{3} }  \times  {( {3}^{4} )}^{ \frac{5}{4} } }{  \frac{1}{ {3}^{ - 3} }  }

=\frac{ {3}^{ - 2}  \times  {3}^{5} }{ {3}^{3} }

=  {3}^{ - 2}  \times  {3}^{5}  \times  {3}^{ - 3}

=  {3}^{ - 2 + 5 - 3}

=  {3}^{0}

=1

Therefore, \dfrac{ {27}^{ - \frac{2}{3} }  \times  {81}^{ \frac{5}{4} } }{ ({ \frac{1}{3}) }^{ - 3} }=1

#Learn more

Solve : 3a + 4/ 2 - 6a = -2/5​

https://brainly.in/question/10559869

Similar questions