Math, asked by hshhhhhgfg, 1 year ago

Find the value of (5a-7b)^3+(9c-5a)^3+(7b-9c)^3

Answers

Answered by Anonymous
9
we have, (5a-7b)^3+(9c-5a)^3+(7b-9c)^3
Let us consider A = (5a-7b)
B = (9c-5a)
C = (7b-9c)
Now, A+B+C = (5a-7b)+(9c-5a)+(7b-9c) = 0
Since, A+B+C= 0
then, A^3 + B^3 + C^3 = 3ABC

This means,
(5a-7b)^3+(9c-5a)^3+(7b-9c)^3
= 3ABC
= 3 {(5a-7b)(9c-5a)(7b-9c)}
Answered by DaIncredible
5
Hey friend,
Here is the answer:
( {5a - 7b})^{3}  + ( {9c - 5a})^{3}  \\  + ( {7b - 9c})^{3}  \\  \\  = ( {5a})^{3}  - ( {7b})^{3}  - 3  \times 5a \times 7b(5a - 7b) \\   +  ( {9c})^{3}   - ( {5a})^{3}  - 3 \times 9c \times 5a(9c - 7b) \\  + ( {7b})^{3}  - ( {9c})^{3}  - 3 \times 7b \times 9c(7b - 9c) \\  \\  =  {125a}^{3}  -  {343b}^{3}  - 105ab \times 5a  +  105ab \times 7b \\  +  {729c}^{3}  -  {125a}^{3}  - 135ac \times 9c  +  135ac \times 5a \\  +  {343b}^{3}  -  {729c}^{3}  - 189bc \times 7b  +  189bc \times 9c \\  \\  =  {125a}^{3}  -  {343b}^{3}  -  {525a}^{2} b +  {735ab }^{2}  \\  +  {729c}^{3}  -  {125a}^{3}  -  {1215ac}^{2}  +  {675a}^{2} c \\  +  {343b}^{3}  -  {729c}^{3}  -  {1323b}^{2} c +  {1701bc}^{2}  \\  \\ after \: solving \\  \\   { - 525a}^{2} b \:  +  {735ab}^{2}  -  {1215ac}^{2}  +  {625a}^{2} c -  {1323b}^{2} c +  {1701bc}^{2}
Hope my answer would be helpful to you!!!

And if helpful, then please mark as brainliest.

@Mahak24

Thanks...
☺☺
Similar questions