Math, asked by djshivaakhil, 1 year ago

Find the value of a and b if 2-√5/2+3√5=√5a+b

Answers

Answered by boffeemadrid
155

Answer:

Step-by-step explanation:

The given equation is:

\frac{2-\sqrt{5}}{2+3\sqrt{5}}=\sqrt{5}a+b

Taking the LHS of the above equation, we get

\frac{2-\sqrt{5}}{2+3\sqrt{5}}=\frac{2-\sqrt{5}}{2+3\sqrt{5}}{\times}\frac{2-3\sqrt{5}}{2-3\sqrt{5}}

=\frac{4-6\sqrt{5}-2\sqrt{5}+15}{4-45}

=\frac{19-7\sqrt{5}}{-41}

=\frac{-7\sqrt{5}+19}{-41}

Now, comparing with RHS, we have

a=\frac{7}{41} and b=\frac{-19}{41}

Answered by lublana
46

Given:

\frac{2-\sqrt{5}}{2+3\sqrt{5}}=\sqrt{5} a+b

To find:

The value of a and b

Solution:

\frac{2-\sqrt{5}}{2+3\sqrt{5}}

By using rationalization

\frac{(2-\sqrt{5})\times (2-3\sqrt{5})}{(3\sqrt{5}+2)(2-3\sqrt{5})}

\frac{4-6\sqrt{5}-2\sqrt{5}+15}{-45+4}

\frac{-8\sqrt{5}+19}{-41}

\frac{8\sqrt{5}-19}{41}

\frac{8}{41}\sqrt{5}-\frac{19}{41}

By comparing we get

a=\frac{8}{41},b=-\frac{19}{41}

Similar questions