Math, asked by tharchin9061, 10 months ago

Find the value of a and b, if √5+√3/√5-√3=a+b√15

Answers

Answered by aliakhan2542
1

Step-by-step explanation:

 \frac{ \sqrt{5} +  \sqrt{3} }{ \sqrt{5} -  \sqrt{3} } = a + b \sqrt{15}

Now, rationalizing

 \frac{ \sqrt{5}  + \sqrt{3} }{ \sqrt{5} -  \sqrt{3} } \times  \frac{ \sqrt{5} +  \sqrt{3} }{ \sqrt{5} +  \sqrt{3} } = a + b \sqrt{15}

 \frac{ ({ \sqrt{5 } +  \sqrt{3}) }^{2} }{ ({ \sqrt{5}) }^{2} - ({ \sqrt{3} )}^{2}   }  = a + b \sqrt{15}

 \frac{5 + 3 + 2 \sqrt{15} }{5 - 3} = a + b \sqrt{15}

 \frac{8 + 2 \sqrt{15} }{2}  = a + b \sqrt{15}

 \frac{2(4 +  \sqrt{15}) }{2}  = a + b \sqrt{15}

4 +  \sqrt{15}  = a + b \sqrt{15}

on comparing both sides

a=4 b=1

hope this is helpful

Similar questions