Math, asked by aishucc1, 1 year ago

Find the value of cos^2 15 - cos^2 75

Answers

Answered by MaheswariS
4

\textbf{Given:}

\bf\;cos^215-cos^275

\text{Using,}\;\bf\;a^2-b^2=(a+b)(a-b)

=(cos15-cos75)(cos15+cos75)

\text{Using,}

\boxed{\bf\;cosC+cosD=2\;cos(\frac{C+D}{2})\;cos(\frac{C-D}{2})}

\boxed{\bf\;sinC+sinD=2\:sin(\frac{C+D}{2})\:cos(\frac{C-D}{2})}

=(-2\;sin(\frac{15+75}{2})\;sin(\frac{15-75}{2}))(2\;cos(\frac{15+75}{2})\;cos(\frac{15-75}{2}))

=(-2\;sin45\;sin(-30))(2\;cos45\;cos(-30))

=(2\;sin45\;sin30)(2\;cos45\;cos30)

=(2(\frac{1}{\sqrt2})(\frac{1}{2}))(2(\frac{1}{\sqrt2})(\frac{\sqrt3}{2}))

=(\frac{1}{\sqrt2})((\frac{1}{\sqrt2})(\sqrt3))

=\frac{\sqrt3}{2}

\therefore\bf\;cos^215-cos^275=\frac{\sqrt3}{2}

Similar questions