Find the value of cot10° × cot20° × cot60° × cot70° × cot 80°
Answers
Answered by
29
Hey sup!
As per the question,
cot10° × cot20° × cot60° × cot70° × cot 80°.
=cot(90°-80°)×cot(90°-70°)×cot60°×cot70°×cot80°. {Cot(90°-A)=tanA)
=tan80°×tan70°×cot60°×cot70°×cot80°.
=tan80°×cot80°×tan70°×cot70°×cot60°.
=1×1×cot60°. {tanA×cotA=1)}.
=cot60°.
=1/√3.
Hope it helps.
As per the question,
cot10° × cot20° × cot60° × cot70° × cot 80°.
=cot(90°-80°)×cot(90°-70°)×cot60°×cot70°×cot80°. {Cot(90°-A)=tanA)
=tan80°×tan70°×cot60°×cot70°×cot80°.
=tan80°×cot80°×tan70°×cot70°×cot60°.
=1×1×cot60°. {tanA×cotA=1)}.
=cot60°.
=1/√3.
Hope it helps.
Answered by
2
The value of cot10° × cot20° × cot60° × cot70° × cot 80° =.
Step-by-step explanation:
We have,
cot10° × cot20° × cot60° × cot70° × cot 80°
To find, the value of cot10° × cot20° × cot60° × cot70° × cot 80° = ?
∴ cot10° × cot20° × cot60° × cot70° × cot 80°
= cot10° × cot20° × cot60° × cot(90° - 20°) × cot (90° - 10°)
= cot10° × cot20° × cot60° × tan20° × tan 10°
[ ∵ cot(90° - A) = tan A]
= (cot10°× tan 10°) × (cot20°× tan20° ) × cot60°
= (1) × (1) × cot60°
[ ∵ cotA × tan A = 1]
= cot60°
=
Hence, the value of cot10° × cot20° × cot60° × cot70° × cot 80° = .
Similar questions