Math, asked by kantmikku02, 2 months ago

Find the value of k in the polynomial
10x2 + kx + 12, such that the zeroes of the
polynomial will have a ratio of 8:15.​

Answers

Answered by 12thpáìn
37

Given

  • f(x) = 10x² + kx + 12
  • Ratio of Zeros is 8:15

To Find

  • Value of k

Solution

f(x) = 10x² + kx + 12

a=10, b=k, c= 12

let \:  \alpha  \: and \:  \beta  \: be \: the \: zeroes \: of \: f(x). \\

Let

 \alpha  = 8 x\\   \beta  = 15x

Sum  \: of  \: Zeros  \: (  \alpha   + \beta )=\dfrac{-b}{a}

\: 8x + 15x=\dfrac{-k}{10}

\: 23x=\dfrac{-k}{10} \:  \:  \:  \:  \:  -  -  -  - (1) \\  \\

Now

Product  \: of  \: Zeros \:  ( \alpha  \beta ) =  \dfrac{c}{a}

8x \times 15x=  \dfrac{12}{10}

120 {x}^{2} =  \dfrac{12}{10}

 {x}^{2} =  \dfrac{12}{10 \times 120}

{x}^{2} =  \dfrac{1}{10 \times 10}

{x}^{2} =  \dfrac{1}{100}

{x}=  \dfrac{1}{10}  \\  \\

  • Putting x in Equation 1

23 \times  \dfrac{1}{10} =\dfrac{-k}{10}

\dfrac{-k}{10}  \times 10 = 23

 - k = 23

 k = -  23

  • Hance the Value of k is -23

Similar questions