find the value of kfor which the system
2x+KY=1 and 3x-5y=7
Answers
first equation
⠀
⠀
seacond equation
⠀⠀
⠀⠀-⠀⠀⠀+⠀⠀⠀⠀⠀-
⠀
⠀
⠀
2x + = 1
=1
Equation 2
⠀
hope it helps you ✅✔️
Answer:
Given....!
\tt\large\green\rightarrow\bold{2x+Ky=1}→2x+Ky=1 first equation
⠀
⠀
\tt\large\green\rightarrow\bold{3x-5y=7}→3x−5y=7 seacond equation
\tt\large\green\rightarrow\bold{2x+Ky=1........\times{3}}→2x+Ky=1........×3
\tt\large\green\rightarrow\bold{3x-5y=7}→3x−5y=7
\tt\large\green\rightarrow\bold{\cancel{6x}+3ky=3}→
6x
+3ky=3
⠀⠀\tt\large\bold{\underline{{\cancel{6x}}-10y=14}}
6x
−10y=14
⠀⠀-⠀⠀⠀+⠀⠀⠀⠀⠀-
\tt\large\green\rightarrow\bold{13Ky=11}→13Ky=11
\tt\large\green\rightarrow\bold{y=\frac{11}{13k}}→y=
13k
11
⠀
⠀
⠀
\tt\large\bold{put.....{y=\frac{11}{13k}}\:in \;equation\: 1}put.....y=
13k
11
inequation1
\tt\large\green\rightarrow\bold{2x+Ky=1}→2x+Ky=1
\tt\large\green\rightarrow→ 2x + \frac{11\cancel{k}} {13\cancel{k}}
13
k
11
k
= 1
\tt\large\green\rightarrow\bold{\frac{2x}{1}+ \frac{11}{13}}→
1
2x
+
13
11
=1
\tt\large\green\rightarrow→ \frac{26x + 11}{13} = 1
13
26x+11
=1
\tt\large\green\rightarrow→ 26x + 11 = 1326x+11=13
\tt\large\green\rightarrow→ \tt{26x = 13 + 11}26x=13+11
\tt\large\green\rightarrow→ 26x = 2426x=24
\tt\large\green\rightarrow→ \tt{x = \frac{24}{26} }x=
26
24
\tt\large\green\rightarrow→ \tt{x = \frac{12}{13}}x=
13
12
Equation 2\huge\red{\ddot\smile}
⌣
¨
\tt\large\green\rightarrow\bold{3x-5y=7}→3x−5y=7
\tt\large\green\rightarrow→ \tt{3 \frac{12}{13} - 5y = 7}3
13
12
−5y=7
\tt\large\green\rightarrow→ \tt{\frac{36}{13} - \frac{5y}{1} = 7}
13
36
−
1
5y
=7
\tt\large\green\rightarrow→ \tt{\frac{36 - 65y}{13} = 7}
13
36−65y
=7
\tt\large\green\rightarrow→ \tt{36 - 65y = 91}36−65y=91
\tt\large\green\rightarrow→ \tt{- 65y = 91 - 36}−65y=91−36
\tt\large\green\rightarrow→ \tt{- 65y = 55}−65y=55
\tt\large\green\rightarrow→ \tt{y = \frac{55}{ - 65}}y=
−65
55
\tt\large\green\rightarrow→ \tt\bold{y = \frac{11}{13} }y=
13
11
\tt\bold\blue{put \:the\: value \:of \:x \:and \:y\: in\: equation \:1..}putthevalueofxandyinequation1..
⠀
\tt\large\green\rightarrow\bold{2x+Ky=1}→2x+Ky=1
\tt\large\green\rightarrow→ \tt\bold{2 (\frac{12}{13}) + k( \frac{11}{ - 13}) = 1}2(
13
12
)+k(
−13
11
)=1
\tt\large\green\rightarrow→ \tt{ \frac{24}{13} + \frac{11k}{ - 13} = 1}
13
24
+
−13
11k
=1
\tt\large\green\rightarrow→ \tt{\frac{24 + - 11k}{13} = 1}
13
24+−11k
=1
\tt\large\green\rightarrow\bold{24-11K=13}→24−11K=13
\tt\large\green\rightarrow\bold{-11K = 13-24}→−11K=13−24
\tt\large\green\rightarrow\bold{-11K=-11}→−11K=−11
\tt\large\green\rightarrow→ \tt{k = \frac{ - 11}{ - 11}}k=
−11
−11
\huge{\purple{\bigstar{\blue{\text{K=1 }}}}}★K=1