Math, asked by abhaybhansali, 10 months ago

find the value of kfor which the system
2x+KY=1 and 3x-5y=7

Answers

Answered by Anonymous
21

\huge\blue{\mid{\fbox{\tt{Solution}}\mid}}

\bold{Given....!}

\tt\large\green\rightarrow\bold{2x+Ky=1}first equation

\tt\large\green\rightarrow\bold{3x-5y=7}seacond equation

\tt\large\green\rightarrow\bold{2x+Ky=1........\times{3}}

\tt\large\green\rightarrow\bold{3x-5y=7}

\tt\large\green\rightarrow\bold{\cancel{6x}+3ky=3}

⠀⠀\tt\large\bold{\underline{{\cancel{6x}}-10y=14}}

⠀⠀-⠀⠀⠀+⠀⠀⠀⠀⠀-

\tt\large\green\rightarrow\bold{13Ky=11}

\tt\large\green\rightarrow\bold{y=\frac{11}{13k}}

\tt\large\bold{put.....{y=\frac{11}{13k}}\:in \;equation\: 1}

\tt\large\green\rightarrow\bold{2x+Ky=1}

\tt\large\green\rightarrow2x +  \frac{11\cancel{k}} {13\cancel{k}} = 1

\tt\large\green\rightarrow\bold{\frac{2x}{1}+  \frac{11}{13}}=1

\tt\large\green\rightarrow \frac{26x + 11}{13}  = 1

\tt\large\green\rightarrow26x + 11 = 13

\tt\large\green\rightarrow\tt{26x = 13 + 11}

\tt\large\green\rightarrow26x = 24

\tt\large\green\rightarrow\tt{x =  \frac{24}{26} }

\tt\large\green\rightarrow\tt{x =  \frac{12}{13}}

Equation 2\huge\red{\ddot\smile}

\tt\large\green\rightarrow\bold{3x-5y=7}

\tt\large\green\rightarrow\tt{3 \frac{12}{13}  - 5y = 7}

\tt\large\green\rightarrow \tt{\frac{36}{13}  -  \frac{5y}{1}  = 7}

\tt\large\green\rightarrow \tt{\frac{36 - 65y}{13}  = 7}

\tt\large\green\rightarrow\tt{36 - 65y = 91}

\tt\large\green\rightarrow \tt{- 65y = 91 - 36}

\tt\large\green\rightarrow \tt{- 65y = 55}

\tt\large\green\rightarrow\tt{y =  \frac{55}{ - 65}}

\tt\large\green\rightarrow\tt\bold{y =  \frac{11}{13} }

 \tt\bold\blue{put \:the\: value \:of \:x \:and \:y\: in\: equation \:1..}

\tt\large\green\rightarrow\bold{2x+Ky=1}

\tt\large\green\rightarrow\tt\bold{2 (\frac{12}{13})  + k( \frac{11}{ - 13})  = 1}

\tt\large\green\rightarrow\tt{ \frac{24}{13}  +  \frac{11k}{ - 13}  = 1}

\tt\large\green\rightarrow \tt{\frac{24 +  - 11k}{13}  = 1}

\tt\large\green\rightarrow\bold{24-11K=13}

\tt\large\green\rightarrow\bold{-11K = 13-24}

\tt\large\green\rightarrow\bold{-11K=-11}

\tt\large\green\rightarrow\tt{k =  \frac{ - 11}{ - 11}}

\huge{\purple{\bigstar{\blue{\text{K=1 }}}}}

\huge\red{\ddot\smile} hope it helps you ✅✔️

Answered by preet123456789
0

Answer:

Given....!

\tt\large\green\rightarrow\bold{2x+Ky=1}→2x+Ky=1 first equation

\tt\large\green\rightarrow\bold{3x-5y=7}→3x−5y=7 seacond equation

\tt\large\green\rightarrow\bold{2x+Ky=1........\times{3}}→2x+Ky=1........×3

\tt\large\green\rightarrow\bold{3x-5y=7}→3x−5y=7

\tt\large\green\rightarrow\bold{\cancel{6x}+3ky=3}→

6x

+3ky=3

⠀⠀\tt\large\bold{\underline{{\cancel{6x}}-10y=14}}

6x

−10y=14

⠀⠀-⠀⠀⠀+⠀⠀⠀⠀⠀-

\tt\large\green\rightarrow\bold{13Ky=11}→13Ky=11

\tt\large\green\rightarrow\bold{y=\frac{11}{13k}}→y=

13k

11

\tt\large\bold{put.....{y=\frac{11}{13k}}\:in \;equation\: 1}put.....y=

13k

11

inequation1

\tt\large\green\rightarrow\bold{2x+Ky=1}→2x+Ky=1

\tt\large\green\rightarrow→ 2x + \frac{11\cancel{k}} {13\cancel{k}}

13

k

11

k

= 1

\tt\large\green\rightarrow\bold{\frac{2x}{1}+ \frac{11}{13}}→

1

2x

+

13

11

=1

\tt\large\green\rightarrow→ \frac{26x + 11}{13} = 1

13

26x+11

=1

\tt\large\green\rightarrow→ 26x + 11 = 1326x+11=13

\tt\large\green\rightarrow→ \tt{26x = 13 + 11}26x=13+11

\tt\large\green\rightarrow→ 26x = 2426x=24

\tt\large\green\rightarrow→ \tt{x = \frac{24}{26} }x=

26

24

\tt\large\green\rightarrow→ \tt{x = \frac{12}{13}}x=

13

12

Equation 2\huge\red{\ddot\smile}

¨

\tt\large\green\rightarrow\bold{3x-5y=7}→3x−5y=7

\tt\large\green\rightarrow→ \tt{3 \frac{12}{13} - 5y = 7}3

13

12

−5y=7

\tt\large\green\rightarrow→ \tt{\frac{36}{13} - \frac{5y}{1} = 7}

13

36

1

5y

=7

\tt\large\green\rightarrow→ \tt{\frac{36 - 65y}{13} = 7}

13

36−65y

=7

\tt\large\green\rightarrow→ \tt{36 - 65y = 91}36−65y=91

\tt\large\green\rightarrow→ \tt{- 65y = 91 - 36}−65y=91−36

\tt\large\green\rightarrow→ \tt{- 65y = 55}−65y=55

\tt\large\green\rightarrow→ \tt{y = \frac{55}{ - 65}}y=

−65

55

\tt\large\green\rightarrow→ \tt\bold{y = \frac{11}{13} }y=

13

11

\tt\bold\blue{put \:the\: value \:of \:x \:and \:y\: in\: equation \:1..}putthevalueofxandyinequation1..

\tt\large\green\rightarrow\bold{2x+Ky=1}→2x+Ky=1

\tt\large\green\rightarrow→ \tt\bold{2 (\frac{12}{13}) + k( \frac{11}{ - 13}) = 1}2(

13

12

)+k(

−13

11

)=1

\tt\large\green\rightarrow→ \tt{ \frac{24}{13} + \frac{11k}{ - 13} = 1}

13

24

+

−13

11k

=1

\tt\large\green\rightarrow→ \tt{\frac{24 + - 11k}{13} = 1}

13

24+−11k

=1

\tt\large\green\rightarrow\bold{24-11K=13}→24−11K=13

\tt\large\green\rightarrow\bold{-11K = 13-24}→−11K=13−24

\tt\large\green\rightarrow\bold{-11K=-11}→−11K=−11

\tt\large\green\rightarrow→ \tt{k = \frac{ - 11}{ - 11}}k=

−11

−11

\huge{\purple{\bigstar{\blue{\text{K=1 }}}}}★K=1

Similar questions