Math, asked by neha3265, 1 year ago

find the value of log 343 to the base 3

Answers

Answered by athleticregina
9

Answer:

\log_33433\log _3\left(7\right)=5.31

Step-by-step explanation:

Given: \log_3343

We have to find the value of given expression \log_3343

Consider the given expression \log_3343

\mathrm{Rewrite\:}343\mathrm{\:in\:power-base\:form:}\quad 343=7^3

=\log _3\left(7^3\right)

\mathrm{Apply\:log\:rule}:\quad \log _a\left(x^b\right)=b\cdot \log _a\left(x\right)

We get ,

\log _3\left(7^3\right)=3\log _3\left(7\right)

=3\log _3\left(7\right)

Thus, \log_33433\log _3\left(7\right)=5.31

Answered by codiepienagoya
0

Given:

\bold{\log_3 (343 )}

To find:

Value=?

Solution:

\log(343)= 2.53529412004\\\\   \log(3)=0.47712125472\\\\

Solve given equation:

\Rightarrow \log_3 (343 )=  \log(343) \div \log(3)\\

                   =\ 2.53529412004 \div 0.47712125472\\

                   =5.31373124748

The final value is: "5.31373124748".

Similar questions