Math, asked by DevrajBose, 1 year ago

Find The Value Of :-
log base 7 √7√7√7.....

Answers

Answered by anmol3421
7
hope it helps if any problem....you may ask
Attachments:

DevrajBose: But The 3rd Step Is Confusing Me... Please Can You Describe It To Me?
anmol3421: in second step i got 1/2 which i multiplied to x
anmol3421: and x becomes 2x
anmol3421: next i used the property of log
anmol3421: log(ab) = log(a) + log(b)
Answered by aquialaska
6

Answer:

value of  log_7\,\sqrt{7\sqrt{7\sqrt{7\sqrt{7...}}}}\:\:is\:\:1

Step-by-step explanation:

Given: log_7\,\sqrt{7\sqrt{7\sqrt{7\sqrt{7...}}}}

To find: It's value

We use the following results,

log\,x^n=n\,log\,x\:\:and\:\:log\,mn=log\,n+log\,n

let x=log_7\,\sqrt{7\sqrt{7\sqrt{7\sqrt{7...}}}}

x=log_7\,({7\sqrt{7\sqrt{7\sqrt{7...}}}})^{\frac{1}{2}}

x=\frac{1}{2}\times log_7\,7\sqrt{7\sqrt{7\sqrt{7\sqrt{7}...}}}

x=\frac{1}{2}\times(log_7\,7+log_7\,\sqrt{7\sqrt{7\sqrt{7\sqrt{7}...}}})

2x=log_7\,7+x

2x-x=log_7\,7

x=1

Therefore, value of  log_7\,\sqrt{7\sqrt{7\sqrt{7\sqrt{7...}}}}\:\:is\:\:1

Similar questions