Find the value of m for the quadratic equation, mx(x-2)+6=0, so that it has two equal roots. *
Answers
Step-by-step explanation:
We can find the roots of the equation by two methods: 1.Factorisation method 2.By using Quadratic formula
Answer:
The value m = 6
Given problem:
Find the value of m for the quadratic equation, mx(x-2)+6=0, so that it has two equal roots.
Step-by-step explanation:
given equation mx(x-2) + 6 = 0
mx²- 2mx + 6 = 0_(1)
compare equation (1) with ax² + bx + c = 0
⇒ a = m, b = -2m and c = 6
given that (1) has equal roots
then discriminant D will be equal to 0
⇒ b² - 4ac = 0
(-2m)² - 4(m)(6) = 0
4m² - 24m = 0
m² - 6m = 0
m(m-6) = 0
m = 0 and m - 6 = 0
m = 6
for m = 0 the equation is not valid
⇒ value of m = 6