find the value of p and q
Attachments:
Answers
Answered by
1
the value of p=0and q =6
saumyasinha:
how?
Answered by
3
Here we use the identities
1) a^2-b^2=(a+b)(a-b)
2)(a+b)^2 -(a-b)^2=4ab
LHS=(3+root7)/(3-root7) - (3-root7)/(3+root7)
=[(3+root7)^2-(3-root7)^2]/[(3-root7)(3+root7)]
=[4×3×root7]/[(3)^2-(root7)^2]
=12root7/(9-7)
=12×root7/2
=6×root7
Therefore
0+6root7=p-q*root7
Compare bothside
p=0,
q=-6
1) a^2-b^2=(a+b)(a-b)
2)(a+b)^2 -(a-b)^2=4ab
LHS=(3+root7)/(3-root7) - (3-root7)/(3+root7)
=[(3+root7)^2-(3-root7)^2]/[(3-root7)(3+root7)]
=[4×3×root7]/[(3)^2-(root7)^2]
=12root7/(9-7)
=12×root7/2
=6×root7
Therefore
0+6root7=p-q*root7
Compare bothside
p=0,
q=-6
Similar questions