Find the value of p for which the equation TX square minus 5x plus t equal to zero has equal roots
Answers
Answered by
0
TX2-6X+T=0 HAS TWO EQUAL ROOTS.
SO,
![\sqrt{ {b }^{2} - 4ac } = 0 \sqrt{ {b }^{2} - 4ac } = 0](https://tex.z-dn.net/?f=++%5Csqrt%7B+%7Bb+%7D%5E%7B2%7D++-+4ac+%7D++%3D+0)
![\sqrt{ {5}^{2} - 4 \times t \times t } = 0 \\ \sqrt{25 - 4 {t}^{2} } = 0 \\ 25 - 4 {t}^{2} = 0 \\ - 4 {t}^{2} = - 25 \\ 4 {t }^{2} = 25 \\ {t}^{2} = 25 \div 4 \\ t = \sqrt{25 \div 4 } \\ t = 5 \div 2 \sqrt{ {5}^{2} - 4 \times t \times t } = 0 \\ \sqrt{25 - 4 {t}^{2} } = 0 \\ 25 - 4 {t}^{2} = 0 \\ - 4 {t}^{2} = - 25 \\ 4 {t }^{2} = 25 \\ {t}^{2} = 25 \div 4 \\ t = \sqrt{25 \div 4 } \\ t = 5 \div 2](https://tex.z-dn.net/?f=+%5Csqrt%7B+%7B5%7D%5E%7B2%7D+-+4+%5Ctimes+t+%5Ctimes+t+%7D++%3D+0+%5C%5C++%5Csqrt%7B25+-+4+%7Bt%7D%5E%7B2%7D+%7D++%3D+0+%5C%5C+25+-+4+%7Bt%7D%5E%7B2%7D++%3D+0+%5C%5C++-+4++%7Bt%7D%5E%7B2%7D+%3D++-+25++%5C%5C+4+%7Bt+%7D%5E%7B2%7D++%3D+25++%5C%5C++%7Bt%7D%5E%7B2%7D++%3D+25+%5Cdiv+4+%5C%5C+t+%3D++%5Csqrt%7B25+%5Cdiv+4+%7D++%5C%5C+t+%3D+5+%5Cdiv+2)
4t2=25
t2=25/4
t=5/2.
THE VALUE OF T IS 5/2.
SO,
4t2=25
t2=25/4
t=5/2.
THE VALUE OF T IS 5/2.
Similar questions