Find the value of sin 330.cos 120+cos 210.sin 300?
Answers
Answered by
130
Alternatively we may write as follows----
sin330= -sin30 = -(1/2)
cos120=-cos60 = -(1/2)
cos210= -cos30 =(-√(3)/2)
sin300=-sin60 = (-√(3)/2)
Putting these values in below equation, we get---------
sin 330.cos 120+cos 210.sin 300
=(-1/2)(-1/2) + (-√(3)/2)(-√(3)/2)
= 1/4+3/4
=1
sin330= -sin30 = -(1/2)
cos120=-cos60 = -(1/2)
cos210= -cos30 =(-√(3)/2)
sin300=-sin60 = (-√(3)/2)
Putting these values in below equation, we get---------
sin 330.cos 120+cos 210.sin 300
=(-1/2)(-1/2) + (-√(3)/2)(-√(3)/2)
= 1/4+3/4
=1
Answered by
88
Answer:
Step-by-step explanation:
=Sin300.cos120 + cos210.sin300
=Sin(360-330).cos(90+30) + =cos(270-210).sin(360-300)
=(-sin30).(-sin30) + (-sin60).(-sin60)
=Sin²30+sin²60
=(1/2)²+(√3/2)²
=1/4+3/4
=4/4
=1
Similar questions