Find the value of: sin
Answers
Answered by
0
We can also write sin 75° as sin (45+30)°
Using the formula sin(a+b)°=sina°.cosb° + cosa°.sinb°
=sin45°.cos30° + cos45°.sin30°
sin45°=cos45°=1/√2, sin30°=1/2, cos30°=√3/2
=(1/√2).(√3/2) + (1/√2).(1/2)
=2/(√2*3) + 1/(2√2)
=2*√6/(√6.√6) + √2/(2√2*√2)
=2√6/6 + √2/(2*2)
=√6/3 + √2/4
=(√6*4 + √2*3)/12
Hence,(4√6 + 3√2)/12 is the required value of sin75°.
Please mark my answer as Brainliest
Using the formula sin(a+b)°=sina°.cosb° + cosa°.sinb°
=sin45°.cos30° + cos45°.sin30°
sin45°=cos45°=1/√2, sin30°=1/2, cos30°=√3/2
=(1/√2).(√3/2) + (1/√2).(1/2)
=2/(√2*3) + 1/(2√2)
=2*√6/(√6.√6) + √2/(2√2*√2)
=2√6/6 + √2/(2*2)
=√6/3 + √2/4
=(√6*4 + √2*3)/12
Hence,(4√6 + 3√2)/12 is the required value of sin75°.
Please mark my answer as Brainliest
Similar questions