Math, asked by laeeqhajeera, 27 days ago

Find the value of the unknown constant . The sum is in the picture​

Attachments:

Answers

Answered by sunitabharti22343
2

Answer:

x = 5

Step-by-step explanation:

2 {}^{4 - 3x}  \div 2 {}^{2 - x}  = 2 {}^{ - 8}

 \frac{2 {}^{4 - 3x} }{2 {}^{2 - x} }  =  \frac{1}{2 {}^{8} }

2 {}^{4 - 3x - 2 + x}  =  \frac{1}{2 {}^{8} }

2 {}^{2 - 2x}  =  \frac{1}{256}

2 {}^{2 - 2x}  = 2 {}^{ - 8}

2 - 2x =  - 8

 - 2x =  - 8 - 2

 - 2x =  - 10

x =   \frac{  10}{2}

x = 5

Thanks..

Please mark me brainlist..

Answered by BrainlySparrow
96

Step-by-step explanation:

{ \huge{ \pink{ \underline{ \underline{ \mathbb{QUESTION:  }}}}}}

Find the value of the unknown constant .

 \displaystyle{ \sf{ {2}^{4 - 3x}  \div  {2}^{2 - x}  =  {2}^{ - 8} }}

{ \huge{ \pink{ \underline{ \underline{ \mathbb{ SOLUTION :  }}}}}}

As the bases are same so we can directly equate with the powers.

As we know that,

 \sf { {a}^{m} \div  {a}^{n}   =  {a}^{m - n} }

 \displaystyle{ \sf{ :  \implies \: (4 - 3x) - (2 - x) =  - 8}}

 \displaystyle{ \sf{ :  \implies \: 4 - 3x - 2 + x =  - 8}}

 \displaystyle{ \sf{ :  \implies \: 4 - 2 - 3x + x =  - 8}}

 \displaystyle{ \sf{ :  \implies2 - 2x =  - 8}}

 \displaystyle{ \sf{ :  \implies \: -2x =  - 8 - 2}}

 \displaystyle{  \sf{ :  \implies \: -2x =  - 10}}

 \displaystyle{ \sf{ : \implies \: x =   \cancel\frac{ - 10}{-2}  }}

 \displaystyle{ \sf{ : \implies \: x =  5 }}

Value of the unknown constant is 5.

{ \huge{ \pink{ \underline{ \underline{ \mathbb{ MORE \:  TO  \: KNOW :  }}}}}}

✪ A number on its own is called a Constant.

✪ An expression is a mathematical statement without an equal-to sign (=).

\bf{\dag}\:\:\underline{\text{Law of Exponents :}}\\\\\bigstar\:\:\sf\dfrac{a^m}{a^n} = a^{m - n}\\\\\bigstar\:\:\sf{(a^m)^n = a^{mn}}\\\\\bigstar\:\:\sf(a^m)(a^n) = a^{m + n}\\\\\bigstar\:\:\sf\dfrac{1}{a^n} = a^{-n}\\\\\bigstar\:\:\sf\sqrt[\sf n]{\sf a} = (a)^{\dfrac{1}{n}}

Similar questions