Find the value of theta if 7sin^2 theta + 3 cos^2 theta =4
Answers
Answered by
1
Given: 7 sin²∅ + 3 cos²∅ = 4
Since we know very well that cos²∅ = 1 - sin²∅.
Hence by replacing value we get,
→ 7 sin²∅ + 3(1 - sin²∅) = 4
→ 7 sin²∅ + 3 - 3 sin²∅ = 4
→ 4 sin²∅ = 4 - 3
→ sin²∅ = ¼
→ (sin∅)² = ¼
→ sin∅ = ½
Since sin 30° = ½, therefore:
→ sin∅ = sin30°
→ ∅ = 30°
Hence value of thera (∅) is 30°.
Answered by
0
Step-by-step explanation:
Answer :-
→ tan30° = 1/√3
Step-by-step explanation :-
We have,
→ 7 sin² ∅ + 3 cos² ∅ = 4 .
⇒ 4 sin²∅ + 3 sin²∅ + 3 cos²∅ = 4 .
⇒ 4 sin²∅ + 3( sin²∅ + cos²∅ ) = 4 .
⇒ 4 sin²∅ + 3( 1 ) = 4 . [ ∵ sin²∅ + cos²∅ = 1 ] .
⇒ 4 sin²∅ + 3 = 4 .
⇒ 4 sin²∅ = 4 - 3 .
⇒ 4 sin²∅ = 1 .
⇒ sin²∅ = 1/4 .
⇒ sin ∅ = √(1/4) .
∴ sin ∅ = 1/2 .
But, sin 30° = 1/2 .
Then, sin ∅ = sin 30° .
Then, tan 30° = 1/√3 .
Hence, it is proved .
Similar questions