Math, asked by Mister360, 3 months ago

Find the value of x^3 + y^3 + z^3 – 3xyz if x^2 + y^2 + z^2 = 83 and x + y + z = 15

Answers

Answered by parneetsingh98
1

Step-by-step explanation:

=(x²+y²+z²)(x+y+z)-3xyz

=83×15-3xyz

=1245-3xyz

=3(415-xyz).Answer

Answered by ItzMeMukku
17

{ \large{ \sf{ \underbrace{\underline{\bigstar \:Given :}}}}}

\sf\color{teal}{x²\: + y² \:+ z² \:= \:83}

\mapsto\bf{And}

\sf\color{teal}{x + y + z = 15}

\mapsto\bf{To\: Find :}

The value of ,\sf\color{teal}{x³ + y³ + z³ - 3 x y z}

\mapsto\bf{Solution :}

\textbf{∵( x + y + z )² = x² + y² + z² + 2 ( x y + y z + z x )}

\mapsto\bf{And}

\sf\color{teal}{x + y + z = 15}

\mapsto\bf{So,}

\sf\color{teal}{83 + 2 ( x y + y z + z x ) = ( 15 )²}

\mapsto\bf{Or, }

\sf\color{teal}{2 ( x y + y z + z x ) = 225 - 83}

\mapsto\bf{Or, }

\sf\color{teal}{2 ( x y + y z + z x ) = 142}

\sf\color{teal}{∴ ( x y + y z + z x )} = \dfrac{142}{2}

\mapsto\bf{i.e}

\sf\color{teal}{( x y + y z + z x ) = 71}

\mapsto\bf{Again}

\therefore\textbf{∵  x³ + y³ + z³ - 3 x y z = ( x + y + z ) [ ( x² + y² + z² ) - ( x y + y z + z x )]}

\mapsto\bf{Or, }

\sf {= ( 15 ) × [ 83 - 71 ]}

\mapsto\bf{Or, }

\sf{= 15 × 12}

\mapsto\bf{i.e}

\sf{ = 180}

{ \large{ \boxed{ \red{ \underline{ \bf \:Hence,}}}}}

\sf\color{darkviolet}The\: value\: of \: x³ + y³ + z³ - 3 x y z \:is \:180 . \:Answer

Thankyou ;)

Similar questions