Math, asked by khatibshoeib1, 13 hours ago

find the value of x such that f(x)=x^2+2x-5 is an increasing function​

Answers

Answered by chopra2006riya
0

Answer:

x = ( \sqrt{6} -1) or x = -(1+\sqrt{6\\)

Attachments:
Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given function is

\rm \: f(x) =  {x}^{2} + 2x - 5 \\

On differentiating both sides w. r. t. x, we get

\rm \: \dfrac{d}{dx}f(x) =  \dfrac{d}{dx}({x}^{2} + 2x - 5) \\

\rm \: f'(x) = \dfrac{d}{dx} {x}^{2} + 2\dfrac{d}{dx}x - \dfrac{d}{dx}5 \\

We know

\boxed{ \rm{ \:\dfrac{d}{dx} {x}^{n}  \:  =  \:  {nx}^{n \:  -  \: 1}  \: }} \\

and

\boxed{ \rm{ \:\dfrac{d}{dx} k  \:  =  \:  0\: }} \\

So, using this result, we get

\rm \: f'(x) =2x + 2 - 0 \\

\rm \: f'(x) =2x + 2  \\

For f(x) to be increasing,

\rm \: f'(x) > 0 \\

\rm \: 2x + 2 > 0 \\

\rm \: 2(x + 1) > 0 \\

\rm \: x + 1> 0 \\

\rm\implies \:x >  - 1 \\

\rm\implies \:x \:  \in \: ( - 1,  \: \infty ) \\

Hence,

\rm\implies \:f(x) \: is \: increasing \: when \:  \bf \: x \:  \in \: ( - 1,  \: \infty ) \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {x}^{n}  & \sf  {nx}^{n - 1}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x} \end{array}} \\ \end{gathered}

Similar questions