Math, asked by aryams12, 11 months ago

find the values of a and b ​

Attachments:

Answers

Answered by DrNykterstein
9

 \sf \rightarrow \quad  \frac{7 + 3 \sqrt{5} }{ 3 +  \sqrt{5} }  -  \frac{7 - 3 \sqrt{5} }{ 3 -  \sqrt{5} }  = a +  \sqrt{5} b \\  \\ \sf \rightarrow \quad  \frac{3 -  \sqrt{5} (7 + 3 \sqrt{5}) - (3 +  \sqrt{5} ) (7 - 3 \sqrt{5} )}{(3 +  \sqrt{5} )(3 -  \sqrt{5} )}  = a +  b \sqrt{5}  \\  \\ \sf \rightarrow \quad  \frac{21 + 9 \sqrt{5} - 7 \sqrt{5}  - 15 - \{ 21 - 9\sqrt{5} + 7\sqrt{5} - 15 \} }{9 - 5}  = a + b \sqrt{5} \\ \\     \sf \rightarrow \quad  \frac{\cancel{21} + 9 \sqrt{5} - 7 \sqrt{5}  - \cancel{15} - \cancel{21} + 9\sqrt{5} - 7\sqrt{5} + \cancel{15} \} }{4}  = a + b \sqrt{5}     \\  \\  </p><p></p><p>\sf \rightarrow \quad \frac{18\sqrt{5} - 14\sqrt{5}}{4} = a + b\sqrt{5} = a + b\sqrt{5} \\ \\</p><p></p><p>\sf \rightarrow \quad \frac{\cancel{4}\sqrt{5}}{\cancel{4}} = a + b\sqrt{5}</p><p></p><p>\\ \\</p><p></p><p>\sf \rightarrow \quad 0 + 1 \cdot \sqrt{5} = a + b \cdot \sqrt{5} \\ \\</p><p></p><p>  \sf \rightarrow \quad \: a =  0 \quad ,  \:  \:  \: b =  1

Answered by kaurrubika
3

Answer:

in this question we have to rationalize

Step-by-step explanation:

hee is your answer in the attachments

hope this will help you

plz plz mark me as brainlist

I can't level up

Attachments:
Similar questions