Math, asked by sakshiarya247, 6 months ago

Find the variance and standard deviation for the following data: 2, 3, 6, 8, 10, 13, 16.


Answers

Answered by jhutan446
0

Answer:

rtkjgrrwiouagshbxhxbsiqnhqkd

Answered by brokendreams
0

Step-by-step explanation:

Given: data: 2, 3, 6, 8, 10, 13, 16.

to find: Standard deviation and Variance.

Arranging the given number in ascending order:

  • as the data is given in the right order we will retain the same.

Mean(x) = \frac{2+3+6+8+10+13+16}{7}

              =  \frac{58}{7}

              = 8.28

hence, the mean of the given data is 8.28

we know that,

variance = \sqrt \frac{{E (x_{1}-x_{2}  } )^{2}}{n}

standard deviation=\frac{{E (x_{1}-x_{2}  } )^{2}}{n}

variance=   \frac{(2-8)^{2} +(3-8)^{2}+(6-8)^{2} +(8-8)^{2} + (10-8)^{2} +(13-8)^{2}+(16-8)^{2}}{7}

              = \frac{(-6)^{2} +(-5)^{2} +(-2)^{2} +(-0)^{2}(-6)^{2} +(5)^{2}+(8)^{2}}{7}

             =  \frac{36+25+4+0+36+25+64}{7}

             = \frac{190}{7}

             = 27.0142

variation = 27.0142

Standard deviation = \sqrt{27.0142}

                               = 5.197

hence the standard deviation of the data is = 5.197

hence the variance of the given data is = 27.0142

and the standard deviation of the data is = 5.197

Similar questions