find the zeroes of the polynomial f(x)=x^3 - 5x^3 - 2x + 24 , if it is given that the product of it's two zeroes is 12.
kinjal1567:
hey cutieeee10101
Answers
Answered by
3
f(x)=x3−5x2−2x+24
Letαβ=12
α+β+γ=−(−5)=5
αβ+βγ+αγ=−21=−2
αβγ=−241=−24
αβ=12⟹12γ=−24=γ=−2
α+β+γ=5
α+β−2=5⟹α+β=7
(α−β)2=(α+β)2−4αβ=72−4×12⟹α−β=±1
α+β=7andα−β=1
(or)α+β=7andα−β=1
On solving we get:
α=4,β=3(or)α=3,β=4
Hence the zeroes of the polynominal are 3, 4 and -2
Answered by
13
Answer:
Let α,β and y be the zeros of polynomial f(x) such that ab=12
We have, α+β+y=
a
−b
=
1
−(−5)
=5
αβ+βy+yα=
a
c
=
1
−2
=−2 and αβy=
a
−d
=
1
−24
=−24
Putting αβ=12 in αβy=−24, we get
12y=−24 ⇒ y=−
12
24
=−2
Now ,α+β+y=5 ⇒ α+β−2=5
⇒ α+β=7 ⇒ α=7−β
∴αβ=12
⇒(7−β)β=12 ⇒
7β−β
2
=12
⇒β
2
−7β+12=0 ⇒ β
2
−3β−4β+12=0
⇒β=4 or β=3
∴α=3 or α=4
Similar questions