Math, asked by saisuryagrandhi, 10 months ago

find the zeros of the polynomial and verify the relationship between the zeros and their cofficients of
xsquare+x-12​

Answers

Answered by SARVESH9580
0

Step-by-step explanation:

hope this helps you............. ..

Attachments:
Answered by Anonymous
1

\bold\red{\underline{\underline{Answer:}}}

\bold{Zeroes \ are \ -4 \ and \ 3.}

\bold\orange{Given:}

\bold{The \ given \ polynomial \ is}

\bold{=>x^{2}+x-12}

\bold\pink{To \ find:}

\bold{Zeroes \ of \ the \ polynomial.}

\bold\green{\underline{\underline{Solution}}}

\bold{The \ given \ polynomial \ is}

\bold{=>x^{2}+x-12}

\bold{Here, \ a=1, \ b=1 \ and \ c=-12}

\bold{=>x^{2}+4x-3x-12}

\bold{=>x(x+4)-3(x+4)}

\bold{=>(x+4)(x-3)}

\bold{\tt{\therefore{x=-4 \ or \ 3}}}

\bold\purple{\tt{\therefore{Zeroes \ are \ -4 \ and \ 3.}}}

__________________________________

\bold\blue{Verification}

\bold{Let \ \alpha \ be \ -4 \ and \ \beta \ be \ -4}

\bold{Sum \ of \ zeroes=\frac{-b}{a}}

\bold{Product \ of \ zeroes=\frac{c}{a}}

___________________________________

\bold{\alpha+\beta=-4+3}

\bold{\therefore{\alpha+\beta=-1...(1)}}

\bold{\frac{-b}{a}=\frac{-(1)}{1}}

\bold{\therefore{\frac{-b}{a}=-1...(2)}}

\bold{from \ (1) \ and \ (2)}

\bold{Sum \ of \ zeroes=\frac{-b}{a}}

___________________________________

\bold{\alpha×\beta=-4×3}

\bold{\therefore{\alpha×\beta=-12...(3)}}

\bold{\frac{c}{a}=\frac{12}{1}}

\bold{\therefore{\frac{c}{a}=12...(4)}}

\bold{from \ (3) \ and (4)}

\bold{Product \ of \ zeroes=\frac{c}{a}}

\bold{Hence, \ verified.}

Similar questions