Math, asked by savanthadya, 11 months ago

find the zeros of the polynomial f of x is equal to X raised to the power of 3 - 5 x raised ^ 2 - 2 X + 24, if it is given that the product of two zeros is 12​

Answers

Answered by Anonymous
49

Answer :-

3, 4 and - 2 are the zeroes

Solution :-

f( x ) = x³ - 5x² - 2x + 24

Comparing with ax³ + bx² + cx + d we get ,

  • a = 1
  • b = - 5
  • c = - 2
  • d = 24

Let α, β and γ be zeroes of the polynomial

Given : Product of two zeroes = 12

⇒ αβ = 12

⇒ β = 12/α

Product of zeroes = αβγ = - d/a = - 24/1 = - 24

⇒ 12 * γ = - 24

⇒ γ = - 24/12 = - 2

Sum of zeroes = α + β + γ = - b/a = - ( - 5 )/ 1 = 5

⇒ α + β + ( - 2 ) = 5

⇒ α + β = 5 + 2 = 7

⇒ α + β = 7

⇒ α + 12/α = 7

⇒ α² + 12 = 7α

⇒ α² - 7a + 12 = 0

⇒ α² - 3α - 4α + 12 = 0

⇒ α(α - 3) - 4(α - 3) = 0

⇒ (α - 4)(α - 3) = 0

⇒ α - 4 = 0 or α - 3 = 0

⇒ α = 4 or α = 3

When α = 4

⇒ β = 7 - 4 = 3

When α = 3

⇒ β = 7 - 3 = 4

Therefore the zeroes of the polynomial are 4, 3 and - 2.

Answered by VishalSharma01
118

Answer:

Step-by-step explanation:

Given :-

f(x) = x³ - 5x² - 2x + 24

Product of two zeroes = 12

To Find :-

Zeros of Polynomial.

Solution :-

f(x) = x³ - 5x² - 2x + 24

Comparing with ax³ + bx² + cx + d,

a = 1

b = - 5

c = - 2

d = 24

Let α, β and γ be zeroes of the polynomial

⇒ αβ = 12

⇒ β = 12/α

Product of zeroes = αβγ = - d/a = - 24/1 = - 24

⇒ 12 × γ = - 24

⇒ γ = - 24/12 = - 2

Sum of zeroes = α + β + γ = - b/a = - ( - 5 )/ 1 = 5

⇒ α + β + ( - 2 ) = 5

⇒ α + β = 5 + 2 = 7

⇒ α + β = 7

⇒ α + 12/α = 7

⇒ α² + 12 = 7α

⇒ α² - 7a + 12 = 0

⇒ α² - 3α - 4α + 12 = 0

⇒ α(α - 3) - 4(α - 3) = 0

⇒ (α - 4)(α - 3) = 0

α - 4 = 0 or α - 3 = 0

α = 4 or α = 3

When α = 4

⇒ β = 7 - 4

β = 3

When α = 3

⇒ β = 7 - 3

β = 4

Hence, the zeroes of the polynomial are 4, 3 and -2.

Similar questions