Math, asked by rajutbdam, 1 month ago

Find the zroes of 3ײ -× -4 and verify the relationship between the zeroes and its coefficients.​

Answers

Answered by Anonymous
11

Answer:

Given :-

  • 3x² - x - 4

To Find :-

  • What is the zeroes of quadratic polynomial and verify the relationship between the zeroes and co-efficient.

Solution :-

Given Equation :

\bigstar\: \: \bf 3x^2 - x - 4

Let,

\implies \sf p(x) =\: 3x^2 - x - 4

Zero of the polynomial is the value of x, where p (x) = 0

By putting p(x) = 0 we get,

\implies \sf 3x^2 - x - 4 =\: 0

\implies \sf 3x^2 - (4 - 3)x - 4 =\: 0

\implies \sf 3x^2 - 4x + 3x - 4 =\: 0\: \: \bigg\lgroup \sf\bold{\pink{By\: splitting\: middle\: term}}\bigg\rgroup\\

\implies \sf x(3x - 4) + 1(3x - 4) =\: 0

\implies \sf (3x - 4)(x + 1) =\: 0

\implies \bf 3x - 4 =\: 0

\implies \sf 3x =\: 4

\implies \sf\bold{\red{x =\: \dfrac{4}{3}}}

\implies \bf x + 1 =\: 0

\implies \sf\bold{\red{x =\: - 1}}

{\small{\bold{\underline{\therefore\: The\: zeroes\: of\: quadratic\: polynomial\: are\: \dfrac{4}{3}\: and\: - 1\: respectively\: .}}}}

Hence,

  • α = 4/3
  • β = - 1

Now, we have to verify the relationship between the zeroes and co-efficient :

Given Equation :

\bigstar\: \: \bf 3x^2 - x - 4

By comparing with ax² + bx + c we get,

  • a = 3
  • b = - 1
  • c = - 4

Sum Of Zeroes :

As we know that :

\mapsto \sf\boxed{\bold{\pink{Sum\: Of\: Zeroes\: (\alpha + \beta) =\: \dfrac{- b}{a}}}}

According to the question by using the formula we get,

\implies \sf \dfrac{4}{3} + (- 1) =\: \dfrac{- (- 1)}{3}

\implies \sf \dfrac{4}{3} - 1 =\: \dfrac{1}{3}

\implies \sf \dfrac{4 - 3}{3} =\: \dfrac{1}{3}

\implies \sf\bold{\purple{\dfrac{1}{3} =\: \dfrac{1}{3}}}

Hence, Verified.

Product Of Zeroes :

As we know that :

\mapsto \sf\boxed{\bold{\pink{Product\: Of\: Zeroes\: (\alpha\beta) =\: \dfrac{c}{a}}}}

According to the question by using the formula we get,

\implies \sf \dfrac{4}{3} \times (- 1) =\: \dfrac{- 4}{3}

\implies \sf\bold{\purple{\dfrac{- 4}{3} =\: \dfrac{- 4}{3}}}

Hence, Verified.

Similar questions