Physics, asked by yashgaming729, 3 months ago

find two consecutive positive integers, sum of whose squares is 365 .​

Answers

Answered by Anonymous
61

Given:

  • Sum of whose squares is 365

 \\

To Find:

  • Find two consecutive positive integers?

 \\

Solution:

Let the two consecutive positive integers be x and x + 1

According to Question:

 \colon\longrightarrow{\sf{ x^2 + (x + 1)^2 = 365}} \\ \\ \\  \colon\longrightarrow{\sf{ x^2 + x^2 + 1 + 2x = 365}} \\ \\ \\  \colon\longrightarrow{\sf{ 2x^2 + 2x - 364 = 0}} \\ \\ \\  \colon\longrightarrow{\sf{ x^2 + x - 182 = 0}} \\ \\ \\ \colon\longrightarrow{\sf{ x^2 + 14x - 13x - 182 = 0}} \\ \\ \\  \colon\longrightarrow{\sf{ x(x + 14) -13(x + 14) = 0}} \\ \\ \\  \colon\longrightarrow{\sf{ (x + 14)(x - 13) = 0}} \\

Thus,

x + 14 = 0 or x – 13 = 0,

⇒ x = –14 or x = 13

Since, the integers are Positive.

 \colon{\boxed{\tt\orange{x = 13_{(One \ Integer)} }}}

 \colon{\boxed{\boxed{\tt\purple{x + 1 = 14_{(Other \ Integer)} }}}}

Therefore,

  • The two consecutive positive integers will be 13 and 14 .
Answered by Anonymous
13

Given :

  • Sum of whose squares = 365 .

To find :

  • Consecutive positive integers

Solution :

\sf \: Let ,

\sf \: The  \: 1st \:  Consecutive \:  numbers \:  be   \\ \sf\: x , x + 1

\sf Sum \:  of  \: there  \: squares \:  will  \: be  \:  \\ \sf \: x² + ( x + 1 )² = 365

\;\;\bf{\;\;\blue{x {}^{2} \:  + x {}^{2}  + 2x  \: + 1  = 365}}

\;\;\bf{\;\;\blue{2x {}^{2} + 2x  \:  - 364 = 0 }}

\;\;\bf{\;\;\red{x {}^{2} + x - 182 = 0 }}

\;\;\bf{\;\;\red{x {}^{2} + 14x - 13x - 182 = 0 }}

\;\;\bf{\;\;\green{x {}^{2}  + 14x - 13x - 182 = 0}}

\;\;\bf{\;\;\green{x(x + 14) - 13(x + 14) = 0}}

\;\;\bf{\;\;\blue{(x + 14)(x - 13) = 0}}

\;\;\bf{\;\;\red{x =  - 14,13}}

\;\;\bf{\;\;\green{x = 13}}

Therefore , the two consecutive positive integer = 13 , 14

Similar questions