Math, asked by arsenal58291, 2 months ago

find two numbers if their sum is -7 and their difference is 14

Answers

Answered by gipsydanger74
0

Answer:

odjdksidodododoodoeoeisooeosodiidididididididididdidididodidiixixixixxiciciciciicicic

Answered by sharanyalanka7
3

Answer:

Given,

Sum of two number = - 7

Difference of same two numbers = 14

To Find :-

What are the Numbers.

Solution :-

As,

Sum of two number = - 7

and

Difference of same two numbers = 14

Let,

the two numbers be 'x' any 'y'

So, according to Question :-

x + y = -7 let it be equation (1)

x - y = 14 let it be equation (2)

Adding both equations 1 and 2 :-

x + y + x - y = -7 + 14

x + x = 7

2x = 7

x = \sf\dfrac{7}{2}

substituting value of'x' in eq -(1) to get value of 'y'

x + y = - 7

\sf\dfrac{7}{2} + y = -7

y =  - 7 -  \frac{7}{2}

Taking L.C.M as 2

y = ( - 7 \times  \frac{2}{2} ) -  \frac{7}{2}

y =  \frac{ - 14}{2}  -  \frac{7}{2}

y =  \frac{ - 14 - 7}{2}

y =  \frac{ - 21}{2}

\sf\therefore value of x , y = \sf\dfrac{7}{2}, \dfrac{-21}{2}

Verification :-

Substituting value of x and y in equation 1 :-

x + y = - 7

 \frac{7}{2}  -  \frac{21}{2}  =  - 7

 \frac{7 - 21}{2}  =  - 7

 \frac{ - 14}{2}  =  - 7

 - 7 =  - 7

hence , both x and y satisfies equation 1 .

Substituting value of x and y in equation 2 :-

x - y = 14

 \frac{7}{2}  - ( -  \frac{21}{2}) = 14

 \frac{7}{2}  +  \frac{21}{2}  = 14

 \frac{7 + 21}{2}  = 14

 \frac{28}{2}  = 14

14 = 14

Hence x ,y satisfies both the equations.

so,

\sf\therefore value of x , y = \sf\dfrac{7}{2}, \dfrac{-21}{2}

Similar questions