Math, asked by DHRUVMAHAJAN8718, 11 months ago

Find whether the lines r= (i-j - k) +lambda (2i + j) and r = (2i-j) + u(î +j - k) intersect or not.If intersecting, find their point of intersection.​

Answers

Answered by jitendra420156
7

Therefore the lines intersect each other at (3,0,1).

Step-by-step explanation:

Given lines are

\vec{r}=\hat i-\hat j-\hat k +\lambda (2\hat i +\hat j)

\Rightarrow \vec{r} = (1+2\lambda)\hat i+(-1+\lambda)\hat j-\hat k .....(1)

and

\vec{r}= 2 \hat i-\hat j +\mu(\hat i+\hat j-\hat k)

\Rightarrow \vec{r}=(2+\mu)\hat i+(-1+\mu)\hat j- \mu \hat k ....(2)

For the intersection

(1+2\lambda)\hat i+(-1+\lambda)\hat j-\hat k=(2+\mu)\hat i+(-1+\mu)\hat j- \mu \hat k

Therefore

1+2\lambda =2+\mu   ,       -1+\lambda=-1+\mu   and  -1=-\mu

From the third equation we get

\mu =1

Putting the value of μ in the first equation

1+2\lambda =2+1

\Rightarrow \lambda =1

we get a definite value of  μ  and λ.

Putting the value of μ in second line

\vec r =(2+1)\hat i +(-1+1)\hat j-1 \hat k

  =3\hat i -\hat k

Therefore the lines intersect each other at (3,0,1).

Similar questions