Math, asked by soham84dari, 9 months ago

find X {√(a+x)+√(a-x)}/{√(a+x)-√(a-x)}=c/d​

Answers

Answered by waqarsd
0

Answer:

 \large{ \bold{x =  0 \: , \: \frac{2acd}{ {c}^{2} +  {d}^{2}  }}}

Step-by-step explanation:

 \frac{ \sqrt{a + x}  +  \sqrt{a - x} }{\sqrt{a + x}   -   \sqrt{a - x}}  =  \frac{c}{d}  \\  \\  =  >  \frac{c}{d}  =  \frac{(\sqrt{a + x}  +  \sqrt{a - x})}{(\sqrt{a + x}   -   \sqrt{a - x})}  \times  \frac{(\sqrt{a + x}  +  \sqrt{a - x})}{(\sqrt{a + x}  +  \sqrt{a - x})}  \\  \\  =  >  \frac{c}{d}  =  \frac{ {(\sqrt{a + x}  +  \sqrt{a - x})}^{2} }{ {( \sqrt{a + x} )}^{2}  -  {( \sqrt{a - x}) }^{2} }  \\  \\  =  >  \frac{c}{d}  =  \frac{2a + 2 \sqrt{ {a}^{2} -  {x}^{2}  } }{2x}  \\  \\  =  >  \frac{c}{d}  =  \frac{a +  \sqrt{ {a}^{2} -  {x}^{2}  } }{x}  \\  \\  =  > xc - da = d \sqrt{ {a}^{2} -  {x}^{2}  }  \\  \\ sobs \\  \\  =  > {c}^{2}   {x}^{2}  +  {a}^{2}  {d}^{2}  - 2acdx =  {a}^{2}  {d}^{2}  -  {d}^{2}  {x}^{2}  \\  \\  =   > ( {c}^{2}  +  {d}^{2} ) {x}^{2}  - 2acdx = 0 \\  \\  =  > x(( {c}^{2}  +  {d}^{2} )x - 2acd) = 0 \\  \\  =  > x = 0 \\  \\  =  > x =  \frac{2acd}{ {c}^{2} +  {d}^{2}  }

HOPE IT HELPS

Similar questions