Find x from the equation:- cosec(90°-A)-Xsin(90°-A)tan(180°+A)=sin(90°+A).
Please ye question jaldi solve karo
Answers
Answered by
10
Note:
cosec(90 - A) = secA
sin(90 - A) = cosA
sin(90 + A) = cosA
tan(180 + A) = tanA.
Now,
= > cosec(90 - A) - xsin(90 - A)tan(180 + A) = sin(90 + A)
= > secA - xcosAtanA = cosA
= > 1 - xsinAcosA = cos^2A
= > xsinAcosA = 1 - cos^2A
= > xsinAcosA = sin^2A
= > x = sin^2A/sinAcosA
= > x = sinA/cosA
= > x = tanA.
Therefore the value of x = tanA.
Hope this helps!
cosec(90 - A) = secA
sin(90 - A) = cosA
sin(90 + A) = cosA
tan(180 + A) = tanA.
Now,
= > cosec(90 - A) - xsin(90 - A)tan(180 + A) = sin(90 + A)
= > secA - xcosAtanA = cosA
= > 1 - xsinAcosA = cos^2A
= > xsinAcosA = 1 - cos^2A
= > xsinAcosA = sin^2A
= > x = sin^2A/sinAcosA
= > x = sinA/cosA
= > x = tanA.
Therefore the value of x = tanA.
Hope this helps!
siddhartharao77:
:-)
Answered by
4
Hey!!
Cosec( 90° - A ) - xsin( 90° - A )tan( 180° + A ) = sin( 90° + A )
secA - xcosAtanA = cosA
=> ( 1 / cosA )- xcosA( sinA / cosA ) = cosA
=> ( 1 / cosA ) - xsinA = cosA
=> 1 - xsinAcosA = cos^2A
=> xsinAcosA = 1 - cos^2A
=> xsinAcosA = sin^2A
=> x = sin^2A / sinAcosA
=> x = sinA / cosA
=> x = tanA
Hence the value of x is tanA
Hope it will helps you
Cosec( 90° - A ) - xsin( 90° - A )tan( 180° + A ) = sin( 90° + A )
secA - xcosAtanA = cosA
=> ( 1 / cosA )- xcosA( sinA / cosA ) = cosA
=> ( 1 / cosA ) - xsinA = cosA
=> 1 - xsinAcosA = cos^2A
=> xsinAcosA = 1 - cos^2A
=> xsinAcosA = sin^2A
=> x = sin^2A / sinAcosA
=> x = sinA / cosA
=> x = tanA
Hence the value of x is tanA
Hope it will helps you
Similar questions