Math, asked by neerajvermag11, 1 year ago

Find x from the equation:- cosec(90°-A)-Xsin(90°-A)tan(180°+A)=sin(90°+A).


Please ye question jaldi solve karo

Answers

Answered by siddhartharao77
10
Note:

cosec(90 - A) = secA

 sin(90 - A) = cosA

sin(90 + A) = cosA

tan(180 + A) = tanA.


Now,

= > cosec(90 - A) - xsin(90 - A)tan(180 + A) = sin(90 + A)

= > secA - xcosAtanA = cosA

= \ \textgreater \  ( \frac{1}{cosA} ) - xcosA( \frac{sinA}{cosA} ) = cosA

= \ \textgreater \  ( \frac{1}{cosA}) - xsinA = cosA

= > 1 - xsinAcosA = cos^2A

= > xsinAcosA = 1 - cos^2A

= > xsinAcosA = sin^2A

= > x = sin^2A/sinAcosA

= > x = sinA/cosA

= > x = tanA.



Therefore the value of x = tanA.



Hope this helps!

siddhartharao77: :-)
Answered by VijayaLaxmiMehra1
4
Hey!!

Cosec( 90° - A ) - xsin( 90° - A )tan( 180° + A ) = sin( 90° + A )

secA - xcosAtanA = cosA

=> ( 1 / cosA )- xcosA( sinA / cosA ) = cosA

=> ( 1 / cosA ) - xsinA = cosA

=> 1 - xsinAcosA = cos^2A

=> xsinAcosA = 1 - cos^2A

=> xsinAcosA = sin^2A

=> x = sin^2A / sinAcosA

=> x = sinA / cosA

=> x = tanA

Hence the value of x is tanA


Hope it will helps you




neerajvermag11: Prove that. Tan alpha +cotA=2cosec2A & deduce that tan75°+cot75°=4
neerajvermag11: Please solve this
Similar questions