Math, asked by FizavaNaurin, 1 year ago

find x from the following equation using properties of proportion: x2-x+1 \x2 +x+1 = 14 (x-1)\13(x+1)
x2 means x square

Answers

Answered by nani234
37
IF a/b= c/d
then using property a+b/b=c+d/d
then cross multiply we get x=3
Answered by Anonymous
153

The value of x is

x = 3

  • Given equation,

 \frac{ {x}^{2}  - x + 1}{ {x}^{2}  + x + 1}  =  \frac{14(x - 1)}{13(x + 1)}

 \frac{ {x}^{2}  - x + 1}{ {x}^{2}  + x + 1}  =  \frac{14x - 14}{13x + 13}  \:  \:  \:  - (1)

  • Now, using the componendo dividendo property that is

if \:  \frac{a}{b}  =  \frac{c}{d} \\ then \:  \frac{a + b}{a - b}  =  \frac{c + d}{c - d}

  • We can write (1) as

 \frac{ ({x}^{2}  - x + 1)  + ( {x}^{2} + x + 1) }{( {x}^{2} - x + 1) - ( {x}^{2}   + x + 1)}  =  \frac{(14x - 14)  + (13x + 13)}{(14x - 14) - (13x + 13)}

 \frac{ {x}^{2}  - x + 1  + {x}^{2} + x + 1}{{x}^{2} - x + 1- {x}^{2}    -  x  - 1}  =  \frac{14x - 14  + 13x + 13}{14x - 14 - 13x  -  13}

 \frac{2 {x}^{2} + 2}{ - 2x}  =  \frac{27x -1}{x - 27}

(x - 27)( {x}^{2}  + 1) = ( - x)(27x - 1)

 {x}^{3}  - 27 {x}^{2}  + x - 27 =  - 27 {x}^{2}  + x

 {x}^{3}  - 27 {x}^{2}  + 27 {x}^{2}  + x -  x = 27

 {x}^{3}  = 27

therefore,

x = 3

Similar questions