Math, asked by halo735, 1 year ago

Find x, so that (2^-1+4^-1+6^-1+8^-1)^x=1

Answers

Answered by manjunpai2000
3

Answer:

 =  {({2}^{ - 1} +  {4}^{ - 1}  +  {6}^{ - 1} +  {8}^{ - 1})}^{x}  </p><p>\\  =   {( \frac{1}{2}  +  \frac{1}{4}  +  \frac{1}{6} +  \frac{1}{8} )}^{x}  </p><p>\\  = {( \frac{192 + 96 + 64 + 48}{384} )}^{x}  </p><p>\\  =  {(\frac{400}{384})}^{x}  </p><p>\\  =  {(\frac{50}{48})}^{x}   </p><p>=  {(\frac{25}{24} )}^{x}  </p><p>\\LHS = RHS</p><p>\\  {( \frac{25}{24} )}^{x}  = 1 </p><p>\\  {( \frac{25}{24} )}^{x}  </p><p>=  {( \frac{25}{24} )}^{0}  </p><p>\\  = x = 0

Don't forget to mark as brainliest

Similar questions