Math, asked by Anonymous, 9 months ago

find x,so that 2x+1 ,x^2 +x+1 and 3x^2 -3x+3 are consecutive terms of an A.P.​

Answers

Answered by Anonymous
14

Answer:

\sf{The \ values \ of \ x \ are \ 1 \ and \ 2.}

Given:

  • \sf{In \ an \ AP,}

  • \sf{2x+1, \  x²+x+1 \ and \ 3x²-3x+3} \sf{are \ consecutive \  terms.}

Solution:

\sf{Here,}

\sf{t_{1}=2x+1,}

\sf{t_{2}=x^{2}+x+1,}

\sf{t_{3}=3x^{2}-3x+3}

\sf{we \ know,}

\boxed{\sf{2\times \ t_{2}=t_{1}+t_{3}}}

\sf{\therefore{2(x^{2}+x+1)=(2x+1)+(3x^{2}-3x+3}}

\sf{\therefore{2x^{2}+2x+2=3x^{2}-x+4}}

\sf{\therefore{x^{2}-3x+2=0}}

\sf{\therefore{x^{2}-x-2x+2=0}}

\sf{\therefore{x(x-1)-2(x-1)=0}}

\sf{\therefore{(x-1)(x-2)=0}}

\sf{\therefore{x=1 \ or \ 2}}

\sf\purple{\tt{\therefore{The \ values \ of \ x \ are \ 1 \ and \ 2.}}}

_____________________________

\sf\blue{Information:}

\sf{we \ know, \ t_{2}=a+d}

\sf{\therefore{2\times \ t_{2}=2a+2d...(1)}}

\sf{Also, \ t_{1}=a \ and \ t_{3}=a+2d}

\sf{\therefore{t_{1}+t_{3}=(a)+(a+2d)}}

\sf{\therefore{t_{1}+t_{3}=2a+2d...(2)}}

\sf{...from \ (1) \ and \ (2), \ we \ get}

\sf{\longmapsto{2\times \ t_{2}=t_{1}+t_{3}}}

Similar questions