Math, asked by greatmansamsam, 4 months ago

Find y in the picture

Attachments:

Answers

Answered by ItsAritraKar7
0

Laws of Exponents:-

\begin{gathered}\boxed{\begin{minipage}{5 cm}\bf{\dag}\:\:\underline{\text{Law of Exponents :}}\\\\\bigstar\:\:\sf\dfrac{a^m}{a^n} = a^{m - n}\\\\\bigstar\:\:\sf{(a^m)^n = a^{mn}}\\\\\bigstar\:\:\sf(a^m)(a^n) = a^{m + n}\\\\\bigstar\:\:\sf\dfrac{1}{a^n} = a^{-n}\\\\\bigstar\:\:\sf\sqrt[\sf n]{\sf a} = (a)^{\dfrac{1}{n}}\end{minipage}}\end{gathered}

\LARGE\mathfrak{\pink{Solution:-}}

\large\mathbb{\orange{GIVEN:-}}

  \frac{{2}^{(1 - y)}  \times {2}^{(y - 1)}}{ {2}^{(y + 2)} }  =  {8}^{(2 - 3y)}  \\

\large\mathbb{\purple{TO FIND:-}}

Value of y .

\large\mathbb{\green{FORMULA:-}}

  •  \frac{ {x}^{9} }{ {x}^{5} }  =  {x}^{(9 - 5)} =  {x}^{4}   \\
  •  { {x}^{9} } \times { {x}^{5} }  =  {x}^{(9  +  5)} =  {x}^{14}  \\
  •  {( {x}^{2} )}^{3} =  {x}^{3 \times 2}   =  {x}^{6}  \\
  •  {a}^{ - 1}  =  \frac{1}{a}  \\

\large\mathbb{\red{ACCORDING \:TO\: THE\: QUESTION:-}}

 \frac{{2}^{(1 - y)}  \times {2}^{(y - 1)}}{ {2}^{(y + 2)} }  =  {8}^{(2 - 3y)}  \\  \\  \implies \:  \frac{ {2}^{(1 - y) + (y - 1)} }{ {2}^{(y + 2)} }  =   {{2}^{3} }^{(2 - 3y)} \\  \\  \implies \: {2}^{(1 - y) + (y - 1) - (y + 2)}  =  {2}^{6 - 9y} \\  \\  \implies \: {2}^{( - y - 2)} =  {2}^{6 - 9y} \\  \\  \implies \:  - y - 2 = 6 - 9y\\  \\  \implies \: 9y - y = 6 + 2\\  \\  \implies \: 8y = 8\\  \\  \implies \: y =   \cancel\frac{8}{8} \\  \\  \implies \: y \:  = 1

\large\mathbb{\purple{ANSWER:-}}

\\  \implies  \boxed{y \:  = 1}

\large\mathbb{\blue{VERIFICATION:-}}

 \frac{{2}^{(1 - y)}  \times {2}^{(y - 1)}}{ {2}^{(y + 2)} }  =  {8}^{(2 - 3y)}  \\  \\ \implies \: \frac{{2}^{(1 - 1)}  \times {2}^{(1 - 1)}}{ {2}^{(1 + 2)} }  =  {8}^{(2 - (3 \times 1))}  \\  \\ \implies \:  \frac{ {2}^{0}  \times  {2}^{0} }{ {2}^{3} } =  {8}^{2 - 3}   \\  \\ \implies \:  \frac{1 \times 1}{8}  =  {8}^{ - 1} \\  \\ \implies \: \frac{1}{8}  =  \frac{1}{8} (proved)


ItsAritraKar7: This can help you.
Similar questions