Math, asked by singhsukh3355, 11 months ago

find zero following quadratic and verify the relationship between the zeros and Coefficient 4x2 +4√3x+3=0​

Answers

Answered by MяƖиνιѕιвʟє
18

Question :

find zero following quadratic and verify the relationship between the zeros and Coefficient 4x2 +4√3x+3=0

To find :

Zeros of quadratic equations and verify its relationship between zeros and coefficient

Solution :

Applying quadratic formula to solve this question

a = 4 b = 4√3 c = 3

Substitute all the value of a, b and c

\implies\sf \frac{-b±\sqrt{b^2-4ac}}{2a}

=> -4√3 ± √(4√3)²- 4 × 4 × 3/2×4

=> -4√3 ± √48 - 48/8

=> -4√3 + √0/8, -4√3 - 0/8

=> -√3/2, -√3/2 are the zeros

Verification :

Sum of zeros

= -√3/2 + -√3/2 = -2√3/2 = √3

\sf \large\frac{-coefficient\:of\:x}{coefficient\:of\:x^2}

Product of zeros

= -√3/2×(-√3/2) = √9/4 = 3/4

\sf \large\frac{constant\:term}{coefficient\:of\:x^2}

Answered by Anonymous
19

\huge{\underline{\underline{\frak{\red{Question}}}}}

find the zeros of following quadratic equation and verify the relationship between the zeros and Coefficient 4x² +4√3x+3=0

\huge{\underline{\underline{\frak{\red{Find\:out}}}}}

Zeros and verify the relationship between zeros and coefficient

\huge{\underline{\underline{\frak{\red{Solution}}}}}

We can find zeros by two method

\large{\boxed{\bf{Method:1}}}

\implies\sf 4x^2+4\sqrt{3}+3=0

Splitting middle term

\implies\sf 4x^2+2\sqrt{3}+2\sqrt{3}+3=0

\implies\sf 2x(2x+\sqrt{3})+\sqrt{3}(2x+\sqrt{3})=0

\implies\sf (2x+\sqrt{3})(2x+\sqrt{3})=0

So,

\sf 2x+\sqrt{3}=0

\sf 2x=-\sqrt{3}

\sf x=\frac{\sqrt{-3}}{2}

\large{\boxed{\bf{Method:2}}}

Using quadratic formula to solve this question

\implies\sf 4x^2+4\sqrt{3}+3=0

a= 4 b=4√3 c= 3

Substitute all the value of a,b and c

\implies\sf D=b^2+4ac

\implies\sf D=(4\sqrt{3})^2-4\times{4}\times{3}

\implies\sf D=48-48=0

\implies\sf x=\frac{-b\pm\sqrt{D}}{2a}

\implies\sf x=\frac{-4\sqrt{3}\pm\sqrt{D}}{2\times{4}}

\implies\sf x=\frac{-4\sqrt{3}+0}{8},\frac{-4\sqrt{3}-0}{8}

\implies\sf x=\frac{4\sqrt{3}}{4\times{2}},\frac{4\sqrt{3}}{4\times{2}}

\implies\sf x=\frac{\sqrt{-3}}{2},\frac{\sqrt{-3}}{2}

\huge{\underline{\underline{\frak{\red{Verification}}}}}

\large{\boxed{\bf{Sum\:of\:zeros}}}

\sf =\frac{\sqrt{-3}}{2}+\frac{\sqrt{-3}}{2}

= √3+√3/2

= √3(1+1)/2 = 2√3/2 = √3

\sf \large\frac{(-coefficient\:of\:x)}{(coefficient\:of\:x^2)}

\large{\boxed{\bf{Product\:of\:zeros}}}

\sf =\frac{\sqrt{-3}}{2}\times\frac{\sqrt{-3}}{2}

\sf =\large\frac{3}{4}

\sf \large\frac{(Constant\:term)}{(coefficient\:of\:x^2)}

Similar questions