Math, asked by manavparmar479, 7 months ago

fine length of side and perimeter of an equilateral triangle whose height is 5√3 cm​

Answers

Answered by sonisiddharth751
1

Given :-

  • a equilateral triangle AB = BC = AC
  • height (altitude) of equilateral triangle = 5√3 cm

To find :-

  1. lenght of equilateral triangle.
  2. perimeter of the the triangle .

formula used :-

 \sf \: height \: of \: equilateral \: triangle = a  \dfrac{ \sqrt{3} }{2}

Solution :-

 \sf \: height \:  = 5 \sqrt{3}  \: cm \\  \\ \sf \:  \therefore \:  \: 5 \sqrt{3} \:  =  a \times \dfrac{ \sqrt{3} }{2}  \\  \\  \sf \: (cross \: multiplication \: ) \\  \\ \implies  \sf10 \sqrt{3}  = a \sqrt{3}  \\  \\\implies  \therefore \sf \:  \: a =  \dfrac{10 \sqrt{3} }{ \sqrt{3} }  \\  \\ \implies  \bf a \:  = 10 \: cm \:

now we have side of equilateral triangle

side = 10 cm

perimeter of equilateral triangle = 3a

 \implies \sf \: 3a =  \: 3 \times 10 \\  \implies \bf \:30 \: cm

hence, perimeter = 30cm

  • side of equilateral triangle = 10 cm
  • perimeter of equilateral triangle = 30 cm
Similar questions