Physics, asked by mohdjavidp2, 2 months ago

For a given initial velocity the horizontal range of a body is 20m when the angle of projection is 60°. What is the horizontal range if it is thrown making an angle of 30° with horizontal?​

Answers

Answered by kaziabid
0

Explanation:

ACOORDING TO MATHEMATICAK RELATIONS WHEN A BALL IS THROWN INTO 60 DEGREE THEN DISTANCE IS 20 M

IF IT IS THROWN AT 30 DEGREE THEN IT SHOULD BE 10 M.

HOPE IT HELPS

Answered by Anonymous
36

Given :

  • Acceleration due to gravity (g) = 10 m/s²
  • Horizontal range (R) when angle of projection is 60° = 20 m
  • Horizontal range (R) when angle of projection is 30° = ?

Answer:

First we need to find the initial velocity :

\longrightarrow\:\:\tt R = \dfrac{2u^2\sin(\theta)\cos(\theta) }{g}

\longrightarrow\:\:\tt 20= \dfrac{2u^2\sin( {60}^{ \circ} )\cos({60}^{ \circ}) }{10} \\

\longrightarrow\:\:\tt 20 \times 10= 2 \times u^2 \times  \dfrac{ \sqrt{3} }{2}  \times   \dfrac{1}{2}  \\

\longrightarrow\:\:\tt  \dfrac{200}{2} = u^2 \times  \dfrac{ \sqrt{3} }{2}  \times   \dfrac{1}{2}  \\

\longrightarrow\:\:\tt  100 = u^2 \times  \dfrac{ \sqrt{3} }{4}   \\

\longrightarrow\:\:\tt  4 \times 100 = u^2 \times  \sqrt{3}    \\

\longrightarrow\:\:\tt  400 = u^2 \times  \sqrt{3}    \\

\longrightarrow\:\:\tt  u^2  =  \dfrac{400}{ \sqrt{3} }  \\

Now, let's find the horizontal range for an inclined angle 30° :

\longrightarrow\:\:\tt R =\dfrac{u^2\sin2(\theta) }{g}

\longrightarrow\:\:\tt R = \dfrac{ \frac{400}{ \sqrt{3} } \sin2( {30}^{ \circ} ) }{10}

\longrightarrow\:\:\tt R = \dfrac{ \frac{400}{ \sqrt{3} } \sin( {60}^{ \circ} ) }{10}

\longrightarrow\:\:\tt R = \dfrac{ \frac{400}{ \sqrt{3} }  \times  \frac{ \sqrt{3} }{2} }{10} \\

\longrightarrow\:\:\tt R = \dfrac{ \frac{400}{2} }{10}

\longrightarrow\:\:\tt R = \dfrac{ 200 }{10}

\green{\longrightarrow\:\:\tt R = 20 \: m}

Similar questions