Math, asked by ramyasri6925, 11 months ago

For what value of k, are the roots of the quadratic equation (k – 12) x2 + 2(k – 12) x + 2 = 0 equal?

Answers

Answered by tashitemx69
3

Step-by-step explanation:

Answer: a = k – 12, b = 2 (k – 12), c = 2

∴ D = b2 – 4ac = [2(k– 12)]2

– 4(k – 12) x 2

= 4 (k – 12)2 – 8 (k– 12)

Roots are equal, if D = 0

⇒ 4 (k – 12) 2 – 8 (k – 12) = 0

⇒ 4(k – 12)(k – 12 – 2) = 0

⇒ (k – 12) (k – 14) = 0

⇒ k = 12 or 14

But k = 12 does not satisfy the eqn.

k = 14 Ans.

Attachments:
Answered by abhyud1221
1

Answer:

Step-by-step explanation:

(k – 12)x2 + 2 (k – 12)x + 2 = 0

Sol. (k – 12)x2 + 2 (k – 12)x + 2 = 0

Comparing with ax2 + bx + c = 0 we have a = k – 12, b = 2 (k – 12), c = 2

We know that,

∆  = b2 – 4ac

= [2 (k – 12)]2 – 4 (k -12) (2)

= (2k – 24)2 – 8 (k – 12)

= 4k2 – 96k + 576 – 8k + 96

= 4k2 – 104k + 672

∵  The roots of given equation are real and equal.

∴ ∆  must be zero.

∴4k2 – 104k + 672 = 0

∴4 (k2 – 26k + 168) = 0

∴ k2 – 14k – 12k + 168 = 0

∴ k (k – 14) – 12 (k – 14)= 0

∴ (k – 14) (k – 12) = 0

∴k – 14 = 0 or k – 12 = 0

∴ k = 14 or k = 12

Similar questions