Math, asked by yasinshah1864, 10 months ago

For what value of k , is the polynomial f(x) =3x4-9x3+x2+15x+k completely divisible by 3x2-5

Answers

Answered by arsh122100
29

Answer:

k =  - 10

Step-by-step explanation:

Given :-

 =  > 3 {x}^{4}  - 9 {x}^{3}  +  {x}^{2}  + 15x + k \: is \: divisible \: by \: 3 {x}^{2}  - 5

To find k

find the value of x from

3 {x}^{2}  - 5

we get ,

 =  > 3 {x}^{2}  - 5  = 0 \\  =  > 3 {x}^{2}  = 5 \\ =  >   {x}^{2}  =  \frac{5}{3 }  \\   =  > x =  \sqrt{ \frac{5}{3} }

Now put the value in the polynomial:-

 =  > 3 {  (  \sqrt{ \frac{5}{3} })  }^{4}   - 9 {(  \sqrt{ \frac{5}{3} } ) }^{3}   +  { (\sqrt{ \frac{5}{3} }) }^{2}  + 15( \sqrt{ \frac{5}{3} } ) + k = 0 \\ =  >  3 {( \frac{5}{3}) }^{2}  - 9( \frac{5}{3} \sqrt{ \frac{5}{3} }  ) +  \frac{5}{3}  + 15 \sqrt{ \frac{5}{3} }  + k = 0 \\  =  >  \frac{75}{9}  -  \frac{45}{3}  \frac{ \sqrt{5} }{ \sqrt{3} }  +  \frac{5}{3}  +  15\sqrt{ \frac{5}{3} }  + k  = 0 \\  =  >  \frac{75 + 15}{9}  -  \frac{45 \sqrt{5} + 45 \sqrt{5}  }{3 \sqrt{3} }  + k = 0 \\  \\  =  >   -  -\frac{90}{9}  + 0 = k \\ k =  - 10

Hope it helps you.

Mark it brainliest.

Similar questions